
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Winter 2009

Lecture 4— Shell Variables, More Shell Scripts

CSE 303 Winter 2009, Lecture 4 1

'

&

$

%

Where are We
We understand most of the bash shell and its “programming

language”. Final pieces we’ll consider:

• Shell variables

– Defining your own

– Built-in meanings

– Exporting

• Arrays

• Arithmetic

• For loops

End with:

• A long list of gotchas (some bash-specific; some common to shells)

• Why long shell scripts are a bad idea, etc.

CSE 303 Winter 2009, Lecture 4 2

'

&

$

%

Shell variables
We already know a shell has state: current working directory, users,

aliases, history.

Its state also includes shell variables that hold strings.

Features:

1. Change variables’ values: foo=blah

2. Add new variables: foo=blah or foo=

3. Use variable: ${foo} (braces sometimes optional)

4. Remove variables: unset foo

5. See what variables “are set”: set

Omitted feature: Functions and local variables (see manual)

Roughly “all variables are global (visible everywhere)”

Only (1) is similar to “real” programming languages

CSE 303 Winter 2009, Lecture 4 3

'

&

$

%

Why Variables?

Variables are useful in scripts, just like in “normal” programming.

“Special” variables affect shell operation. 3 most (?) common:

• PATH

• PS1

• HOME

CSE 303 Winter 2009, Lecture 4 4

'

&

$

%

Export

If a shell runs another program (perhaps a bash script), does the other

program “see the current variables that are set”?

• i.e., are the shell variables part of the initial environment of the

new program?

It depends.

export foo – yes it will see value of foo

export -n foo – no it will not see value of foo

Default is no.

If the other program sets an exported variable, does the outer shell see

the change?

No.

CSE 303 Winter 2009, Lecture 4 5

'

&

$

%

Arrays

More flexible than in Java, but much harder to use right

Make an array: foo=(x y z)

Set element: foo[2]=hi

Get element: ${foo[2]}

Get number of elements: ${#foo[*]}

Get all elements separated by spaces: ${foo[*]}

Arrays do not have “fixed sizes”; example: code up an ever-growing

list.

CSE 303 Winter 2009, Lecture 4 6

'

&

$

%

Arithmetic

Variables are strings, so k=$i+$j is not addition.

But ((k=$i+$j)) is (and in fact the $ is optional).

So is let k="$i + $j".

The shell converts the strings to numbers, silently using 0 as necessary.

Example: code up a stack. (Enough to reimplement built-ins pushd

and popd.)

CSE 303 Winter 2009, Lecture 4 7

'

&

$

%

For-loops

Syntax:

for v in w1 w2 ... wn

do

body

done

Execute body n times, with v set to wi on ith one. (Afterwards,

v=wn).

Why so convenient?

• Use a filename pattern after in

• Use list of argument strings after in : "$@"

• Use ${blah[*]} after in

CSE 303 Winter 2009, Lecture 4 8

'

&

$

%

Quoting and Variables

Does x=* set x to string-holding-asterisk or

string-holding-all-filenames?

If $x is *, does ls $x list all-files or file named asterisk?

Are variables expanded in double-quotes? single-quotes?

Could consult the manual, but honestly it’s easier to start a shell and

experiment. For example:

x="*"

echo x

echo $x

echo "$x" (Double quotes suppress some substitutions)

echo ’$x’ (Single quotes suppress all substitutions)

...

CSE 303 Winter 2009, Lecture 4 9

'

&

$

%

Gotchas: A very partial list

1. Typo in variable name on left: create new variable oops=7

2. Typo in variable use: get empty string ls $oops

3. Use same variable name again: clobber other use HISTFILE=uhoh

4. Omit subscript: get first element of array ${arr}

5. Omit [*] on length: get 1st element’s string-length ${#arr}

6. Array-out-of-bounds on left: create larger array

7. Array-out-of-bounds on use: get empty string

8. Spaces in variables: use double-quotes if you mean “one word”

9. Non-number used as number: end up with 0

10. set f=blah: apparently does nothing (is assignment in csh)

11. Omitted braces: $foo[0] and $12 not what you think.

CSE 303 Winter 2009, Lecture 4 10

'

&

$

%

Shell Programming Revisited

How do Java programming and shell programming compare?

The shell:

• “shorter”

• convenient file-access, file-tests, program-execution, pipes

• crazy quoting rules and syntax

• also interactive

Java:

• none of the previous gotchas

• local variables, modularity, typechecking, array-checking, . . .

• real data structures, libraries, regular syntax

Rough rule of thumb: Don’t write shell scripts over 200 lines?

CSE 303 Winter 2009, Lecture 4 11

'

&

$

%

Treatment of Strings

Suppose foo is a variable that holds the string hello

Java Bash

Use variable (get hello) foo $foo

The string foo "foo" foo

Assign variable foo = hi; foo=hi

Concatenation foo + "oo" ${foo}oo

Conversion to number library-call silent and implicit

Moral: In Java, variable-uses are easier than string-constants.

Opposite in Bash.

Both biased toward common use.

CSE 303 Winter 2009, Lecture 4 12

'

&

$

%

More on Shell Programming

Metapoint: Computer scientists automate and end up accidentally

inventing (bad) programming languages. It’s like using a screwdriver

as a pry bar.

HW2 in part, will be near the limits of what I recommend doing with a

shell script (and we’ll end up cutting corners as a result)

There are plenty of attempts to get “the best of both worlds” in a

scripting language: Perl, Python, Ruby, . . .

Personal opinion: it raises the limit to 1000 or 10000 lines? Get you

hooked on short programs.

Picking the bash shell was a conscious decision to emphasize the

interactive side and see “how bad programming can get”.

Next: Regular expressions, grep, sed, find.

CSE 303 Winter 2009, Lecture 4 13

'

&

$

%

Bottom Line

Never do something manually if writing a script would save you time.

Never write a script if you need a large, robust piece of software.

Some programming languages try to give “best of both worlds” – you

now have seen two extremes that don’t (Java and bash).

CSE 303 Winter 2009, Lecture 4 14

