
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Winter 2009

Lecture 10— C: C Preprocessor basics; printf/scanf

CSE 303 Winter 2009, Lecture 10 1

'

&

$

%

Where are We

Two important “sublanguages” used a lot in C (almost every program)

• The preprocessor: runs even before the compiler (hence the name)

– Simple #include and #define for now; more later

• printf/scanf: interpret certain strings funny at run-time

– Really just a library though

CSE 303 Winter 2009, Lecture 10 2

'

&

$

%

The Preprocessr

Rewrites your .c file before the compiler gets at the code.

• Lines starting with # tell it what to do.

Can do crazy things (please don’t); uncrazy things are:

1. Including contents of header files

2. Defining constants (now) and parameterized macros

(textual-replacements) (later)

3. Conditional compilation (later)

CSE 303 Winter 2009, Lecture 10 3

'

&

$

%

File inclusion
#include <foo.h>

• Search for file foo.h in “system include directories” (on attu

/usr/include and subdirs) for foo.h and include its

preprocessed contents (recursion!) at this place.

– Typically lots of nested includes, so result is a mess nobody

looks at.

– Idea is simple: declaration for fgets is in stdio.h (use man for

what file to include)

• #include "foo.h" the same but first look in current directory.

– How you break your program into smaller files and still make

calls to other files.

• gcc -I dir1 -I dir2 ... look in these directories for all

header files first (keeps paths out of your code files).

CSE 303 Winter 2009, Lecture 10 4

'

&

$

%

Simple macros

#define M_PI 3.14 // capitals a convention to avoid problems

#define DEBUG_LEVEL 1

#define NULL 0 // already in standard library

Replace all matching tokens in the rest of the file.

• Knows where “words” start and end (unlike sed)

• Has no notion of scope (unlike C compiler)

• (Rare: can shadow with another #define or use #undef)

#define foo 17

void f() {

int food = foo; // becomes int food = 17 (ok)

int foo = 9+foo+foo; // becomes int 17 = 9+17+17 (nonsense)

}

CSE 303 Winter 2009, Lecture 10 5

'

&

$

%

printf and scanf

“Just” two library functions in the standard library

• Prototypes in stdio.h

Example: printf("%s: %d %g ", x, y+9, 3.0)

They can take any number of arguments.

• You can define functions like that too, but it is rarely useful,

arguments are not checked for any types, and writing the function

definition is a pain.

– Not covered in 303.

The f is for “format” – crazy characters in the format string control

formatting.

CSE 303 Winter 2009, Lecture 10 6

'

&

$

%

The rules

To avoid HYCSBWK:

• Number of arguments better match number of %

• Corresponding arguments better have the right types (%d, int

%f, float, %e, float (prints scientific), %s, \0-terminated char*,

. . . (look them up))

For scanf, arguments should be pointers to the right type of thing

(reads input and assigns to the variables).

• So int* for %d, but still char* for %s (not char**)

CSE 303 Winter 2009, Lecture 10 7

'

&

$

%

More funny characters

Between the % and the letter (e.g., d) can be other things that control

formatting (look them up; we all do).

• Padding (width) %12d %012d

• Precision . . .

• Left/right justification . . .

Know what is possible; know that other people’s code may look funny.

CSE 303 Winter 2009, Lecture 10 8

'

&

$

%

More on scanf

• Check for errors (returns number of % sucessfully matched)

– maybe the input does not match the text

– maybe some “number” in the input does not parse as a number

• Always bound your strings

– Or some external data could lead to arbitrary behavior

(common source of viruses; input a long string containing evil

code)

– Remember there must be room for the \0

– %s reads up to the next whitespace

Example: scanf("%d:%d:%d",&hour,&minutes,&seconds);

Example: scanf("%20s",buf) (buf better have room for 20

characters)

CSE 303 Winter 2009, Lecture 10 9

'

&

$

%

Useful, bizarre sublangage

This is yet another funky little collection of characters with strange

meaning.

• Pretty useful for reading/writing files (and the screen)

– See fprintf, fscanf

• Also useful for reading/writing regular old strings

– See snprintf, sscanf

– (Do not use sprintf unless you enjoy danger.)

CSE 303 Winter 2009, Lecture 10 10

