
Name:

CSE 303, Winter 2007, Final Examination
15 March 2007

Please do not turn the page until everyone is ready.

Rules:

• The exam is closed-book, closed-note, except for two 8.5x11in pieces of paper (both sides).

• Please stop promptly at 10:20.

• You can rip apart the pages, but please write your name on each page.

• There are 100 points total, distributed unevenly among 8 questions (many of which have multiple
parts).

• When writing code, style matters, but don’t worry about indentation.

Question Max Grade
1 15
2 15
3 10
4 15
5 10
6 20
7 5
8 10

Total 100

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around.

• If you have questions, ask.

• Relax. You are here to learn.

1

Name:

1. (15 points) Consider the following C program:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define MAX_SIZE 1024

#define MAX_BUF 256

typedef struct item {

char product[MAX_BUF];

int price;

} Item;

void add_element(Item* inventory[], int* total, Item* item) {

if ((*total) < MAX_SIZE) {

inventory[*total] = item;

(*total)++;

}

}

int main() {

Item *inventory[MAX_SIZE];

int total = 0;

Item *p = (Item*)malloc(sizeof(Item));

if (!p) {

printf("Out of memory\n");

return 1;

}

strncpy(p->product,"Product",MAX_BUF);

p->product[MAX_BUF-1]=’\0’;

p->price = 30;

add_element(inventory,&total,p);

free(p);

// ... more code ...

return 0;

}

2

(a) (5 points) There is a bug in the above program related to memory management. Explain what
the problem is.

(b) (5 points) Fix the above program by editing only the function main. Modify directly the source
code above.

(c) (5 points) Fix the above program by modifying function add_element. Feel free to either re-write
this function below or modify the source code above.

Solution:

(a) The function add_element copies the value of the pointer to Item that it is given as argument
directly into the inventory array. After add_element returns both p and inventory[total-1]
point to the same memory location. When main frees this chunk of memory (free(p)), this
creates a dangling pointer in the inventory array.

(b) To fix the program, we must remove the call to free in main.

(c) void add_element(Item* inventory[], int* total, Item* item) {

if ((*total) < MAX_SIZE) {

Item* new_item = (Item*)malloc(sizeof(Item));

if (! new_item) {

printf("Out of memory\n");

return;

}

strncpy(new_item->product,item->product,MAX_BUF);

new_item->product[MAX_BUF-1]=’\0’;

new_item->price = item->price;

inventory[*total] = new_item;

(*total)++;

}

}

3

2. (15 points) Consider a software system composed of the following set of files:

% ------------------------------

% Content of A.h

% ------------------------------

#ifndef A_H

#define A_H

typedef struct s_a {

int a;

} A;

void printA(A element);

#endif

% ------------------------------

% Content of A.c

% ------------------------------

#include <stdio.h>

#include "A.h"

void printA(A element) {

printf("Element A {%d}\n",element.a);

}

% ------------------------------

% Content of B.h

% ------------------------------

#ifndef B_H

#define B_H

typedef struct s_b {

int b;

} B;

void printB(B element);

#endif

% ------------------------------

% Content of B.c

% ------------------------------

#include <stdio.h>

#include "B.h"

void printB(B element) {

printf("Element B {%d}\n",element.b);

}

% ------------------------------

% Content of C.h

% ------------------------------

#ifndef C_H

#define C_H

#include "A.h"

#include "B.h"

typedef struct s_c {

A element_a;

B element_b;

} C;

void printC(C element);

#endif

% ------------------------------

% Content of C.c

% ------------------------------

#include <stdio.h>

#include "C.h"

void printC(C element) {

printf("Element C {\n");

printA(element.element_a);

printB(element.element_b);

printf("}\n");

}

% ------------------------------

% Content of main.c

% ------------------------------

#include "A.h"

#include "B.h"

#include "C.h"

int main() {

A item1;

item1.a = 3;

B item2;

item2.b = 4;

C item3;

item3.element_a = item1;

item3.element_b = item2;

printC(item3);

return 0;

}

4

(a) (10 points) The Makefile below builds the software system shown above, but it contains several
errors. Fix this Makefile by correcting the rules that have errors and by adding any possibly
missing rules.

CC = gcc
CFLAGS = -Wall -g
LDFLAGS =

PROGRAMS = main

all: $(PROGRAMS)

A.o: A.c A.h
$(CC) $(CFLAGS) -c $<

main.o: main.c
$(CC) $(CFLAGS) -c $<

B.c: B.h
$(CC) $(CFLAGS) -c $<

main: main.o A.o B.o C.o
$(CC) $(LDFLAGS) -o $@ $^

clean:
rm -f *.o $(PROGRAMS)

Reminder:

• $@ designates the current target
• $^ designates all prerequisites
• $< designates the left-most prerequisite

If you write any additional rules, you do not need to use the above symbols.

5

(b) (5 points) What would happen if we removed all the following preprocessor directives at the
same time from the header files and typed make?

From A.h remove From B.h remove From C.h remove

#ifndef A_H

#define A_H

#endif

#ifndef B_H

#define B_H

#endif

#ifndef C_H

#define C_H

#endif

Solution:

(a) Note that the order of the rules does not matter, except for all, which must appear as the first
rule.

CC = gcc
CFLAGS = -Wall -g
LDFLAGS =

PROGRAMS = main

all: $(PROGRAMS)

A.o: A.c A.h
$(CC) $(CFLAGS) -c $<

main.o: main.c A.h B.h C.h
$(CC) $(CFLAGS) -c $<

B.o: B.c B.h
$(CC) $(CFLAGS) -c $<

main: main.o A.o B.o C.o
$(CC) $(LDFLAGS) -o $@ $^

C.o: C.c C.h B.h A.h
$(CC) $(CFLAGS) -c $<

clean:
rm -f *.o $(PROGRAMS)

(b) main.c includes A.h, B.h, and C.h. But C.h also includes A.h and B.h. Without the preprocessor
directives, the content of A.h and B.h would get added twice into the pre-processed main.c file.
This would cause a compiler error since the structures have been defined twice.

6

3. (10 points) For each statement below about CVS, indicate if it is true or false.

(a) (2 points) A team of software developers is using CVS to manage their source code. When a team
member modifies a file and commits his or her changes, these changes propagate automatically to
all other team members, without them performing any operations.
true false

(b) (2 points) When using a version control system such as CVS, it is possible to recover old versions
of previously modified and committed files.
true false

(c) (2 points) Alice and Bob edit the same source file at the same time. Alice commits her changes
first. When Bob updates his local copy before committing his own changes, CVS will try to merge
the changes made by Bob and Alice.
true false

(d) (2 points) Chuck creates a new directory called mydirectory and adds it to CVS with the
command: cvs add mydirectory. From that point on, all the files that Chuck creates in
mydirectory will automatically be added to the CVS repository.
true false

(e) (2 points) Chuck creates a new directory called mydirectory, adds some files to that di-
rectory and adds the directory to CVS with the command: cvs add mydirectory. All files in
mydirectory are automatically added to CVS as well.
true false

Solution:

(a) false

(b) true

(c) true

(d) false

(e) false

7

4. (15 points) Your friend Donna accidentally erased the specification for one of her functions. That
function, called validate checks if the content of an array of integers is valid or not.

(a) (5 points) Given the current implementation of function validate below, help Donna recover her
specification for the function:

/**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*/

bool validate(int *array, int size) {

assert(array);

if (size == 0) {

return true;

}

int i;

for (i = 0; i < size; i++) {

if ((array[i] % 2) || (array[i] < 2) || (array[i] > 20)) {

return false;

}

}

return true;

}

8

(b) (5 points) List the smallest possible number of white-box test cases for function validate that
still achieve full statement coverage. For each test case, only show the arguments that you are
passing to the function as shown in the example below:

Example test case: int array[] = { 1, 2, 3, 4, 5 }; int size = 5;
(this test case does not count)

(c) (5 points) List what could constitute a good set of 10 black-box test cases for function validate.

Solution:

(a) /**

* Validates the content of an array

*

* Precondition

* Argument array must point to an array of integers

* (it cannot be null nor dangling)

* The size of the array must be equal to the value

* of argument size.

*

* Postcondition

* The array given as argument is declared to be

* valid if it contains only even integers

* between 2 and 20.

* An empty array is considered valid.

*

* @param array the array to validate

* @param size the size of the array

* @return true if the array is valid and false otherwise

*/

(b) Three test cases are necessary to achieve full statement coverage: the case where the array is
empty, the case where the array contains only valid numbers, and the case where the array
contains one or more invalid numbers. Below are three possible test cases:

Test case 1: int array[] = { }; int size = 0;
Test case 2: int array[] = { 2, 4, 6, 8 }; int size = 4;
Test case 3: int array[] = { 1, 3, 5 }; int size = 3;

(c) Many test-cases are possible. We accepted any set of black-box test cases where each test contained
inputs from a different equivalence class. Below are 10 examples of valid test cases:

Test case 1: int array[] = { }; int size = 0;
Test case 2: int array[] = { 2 }; int size = 1;
Test case 3: int array[] = { 1 }; int size = 1;
Test case 4: int array[] = { 20 }; int size = 1;
Test case 5: int array[] = { 21 }; int size = 1;
Test case 6: int array[] = { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 }; int size = 10;
Test case 7: int array[] = { 1, 3, 5 }; int size = 3;
Test case 8: int array[] = { 2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20 }; int size = 11;
Test case 9: int array[] = { 2, 4, 6, 8, 21, 10, 12, 14, 16, 18, 20 }; int size = 11;
Test case 10: int array[] = { 2, 4, 6, 8, 1, 10, 12, 14, 16, 18, 20 }; int size = 11;

9

5. (10 points) Consider the following C++ program.

#include <iostream>

using namespace std;

class Vehicle {

public:

Vehicle(string owner) : _owner(owner) {}

virtual ~Vehicle() {}

virtual void print() = 0;

protected:

string _owner;

};

class Car : public Vehicle {

public:

Car(string owner, string manufacturer, string model)

: Vehicle(owner),

_manufacturer(manufacturer),

_model(model) {

}

virtual ~Car() {}

virtual void print() {

cout << "owner = " << _owner << ", "

<< "manufacturer = " << _manufacturer << ", "

<< "model = " << _model << endl;

}

private:

string _manufacturer;

string _model;

};

void function1() {

Car car1("Alice","Honda","Accord"); // (a) Legal (b) Illegal

Vehicle *vehicle1 = new Vehicle("Bob"); // (a) Legal (b) Illegal

Car *car2 = new Car("Donna","BMW","335"); // (a) Legal (b) Illegal

Vehicle *vehicle2 = new Car("Chuck","Toyota","Rav4"); // (a) Legal (b) Illegal

Car *car3 = new Vehicle("Erik","Mitsubishi","Lancer"); // (a) Legal (b) Illegal

}

10

void function2() {

Car *car = new Car("Eugene","Dodge","RAM");

Vehicle *vehicle = dynamic_cast<Vehicle*>(car);

if (vehicle) {

cout << "(1) OK" << endl;

vehicle->print();

} else {

cout << "(1) ERROR" << endl;

}

Car *car2 = dynamic_cast<Car*>(vehicle);

if (car2) {

cout << "(2) OK" << endl;

car2->print();

} else {

cout << "(2) ERROR 3 " << endl;

}

}

int main() {

function1();

function2();

return 0;

}

(a) (5 points) Examine the statements in function1 above. For each statement, indicate if it is
legal or illegal by circling the corresponding comment. A statement is illegal if it results in a
compile-time error or a runtime error.

(b) (5 points) Examine function2. What will this function print if we execute the program?
(Warning: notice the calls to member function print).

Solution:

(a) (a) Legal
(b) Illegal
(a) Legal
(a) Legal
(b) Illegal

(b) (1) OK
owner = Eugene, manufacturer = Dodge, model = RAM
(2) OK
owner = Eugene, manufacturer = Dodge, model = RAM

11

6. (20 points) Consider the following C++ program:
// -----------------------------

// Content of StringList.h

// -----------------------------

#ifndef STRINGLIST_H

#define STRINGLIST_H

#include <iostream>

#include <cassert>

#define BUF_SIZE 1024

using namespace std;

typedef struct node {

char original[BUF_SIZE];

struct node *next;

} Node;

class StringList {

public:

StringList();

StringList(const StringList& old);

~StringList();

void insert (const char *original);

void print() const;

private:

Node* _head;

};

#endif

// -----------------------------

// Content of main.cc

// -----------------------------

#include "StringList.h"

using namespace std;

int main() {

StringList *list1 = new StringList();

list1->insert("xxxx");

list1->insert("aaaa");

StringList *list2 = new StringList(*list1);

list2->insert("cccc");

list1->print(); // Line 14

list2->print(); // Line 15

delete list1;

delete list2;

return 0;

}

// -----------------------------

// Content of StringList.cc

// -----------------------------

#include "StringList.h"

StringList::StringList() : _head(NULL) {}

StringList::StringList(const StringList& old) {

_head = old._head;

}

StringList::~StringList() {

while (_head) {

Node *next = _head->next;

delete _head;

_head = next;

}

}

void

StringList::insert (const char *original) {

assert(original);

assert(strlen(original) < BUF_SIZE);

Node *node = new Node();

if (!node) {

cerr << "Out of memmory\n";

return;

}

strncpy(node->original,original,BUF_SIZE);

node->original[BUF_SIZE-1] = ’\0’;

node->next = NULL;

node->next = _head;

_head = node;

}

void

StringList::print () const {

Node *current = _head;

cout << "\nList content is:\n";

while (current) {

cout << current->original << endl;

current = current->next;

}

}

12

(a) (5 points) What is the output of the above program at line 14? Be very careful! This
question is more tricky than it seems at first glance.

(b) (5 points) What is the output of the above program at line 15? Be very careful! This
question is also tricky.

(c) (5 points) What happens after line 15?

(d) (5 points) Without writing any code, explain in plain English how you could fix this problem?

Solution:

(a) List content is:
aaaa
xxxx

(b) List content is:
cccc
aaaa
xxxx

(c) Because the copy constructor of class StringList makes only a shallow copy of the list, both
list1 and list2 share a subset of elements in their lists. The line: delete list1 causes the
invocation of the destructor of list1 which deletes all the elements in list1. This causes list2
to have a dangling pointer in the middle of its list. delete list2 causes the invocation of the
destructor of list2, which tries to delete the previously shared Node instances for a second time.
This causes the program to crash (segmentation fault).

(d) The copy constructor should make a deep copy of the list given as argument. It should copy all
the elements in the list one by one. Note, that we were not looking just to avoid the crash but a
proper bug fix that would also be robust against any other code we could add later on.

13

7. (5 points) While testing a C program, called main, you discovered that for some inputs, the program
enters an infinite loop somewhere inside function X. Function X contains 3 for loops and 2 while loops.
Explain how you would use a debugger, such as gdb, to figure out where in function X the problem lies.

Solution:
We need to compile the program with the debugging information (option -g), and execute the program
with the debugger (gdb main). Before starting the program, we can place a breakpoint at the beginning
of each loop inside function X. We can do this by specifying the appropriate line numbers. We can then
run the program on one of the inputs that causes the infinite loop. The execution will stop at the first
breakpoint that we set. We can then continue execution until the next breakpoint. If the execution
reaches and stops at the next breakpoint, we know that the previous loop is fine. If the execution never
makes it to the next breakpoint (or the end of the program for the last breakpoint), then we know that
the previous loop is faulty. We can then clear all breakpoints, leaving only the one at the faulty loop.
By restarting the program, the execution will now stop at the beginning of the faulty loop. From that
point on, we can step through the loop one line at the time. At each line, we can print and examine
the current value of all local and global variables that are within scope. We can continue to do this
until we find the problem.

14

8. (10 points)

(a) (4 points) Why would anyone want to write a multi-threaded program?

(b) (4 points) What are some drawbacks of having multiple threads in a program?

(c) (2 points) Name (without explaining) two types of problems that can occur in a multi-threaded
program that cannot occur in a program with a single thread.

Solution:

9. A multi-threaded program can potentially achieve a higher performance than a single-threaded one,
because executing multiple threads in parallel can improve the utilization of system resources. For
example, if one thread blocks while reading data off the disk, another thread can continue its execution
and keep the CPU busy. Similarly, a multi-threaded program can benefit from multiple processors as
different threads can run on different processors at the same time.

10. A multi-threaded program is more complex. Properly synchronizing threads by locking shared variables
is difficult. Multi-threaded programs are also more difficult to debug. Finally, there is an overhead in
running multiple threads.

11. Race conditions and deadlocks.

15

