Name:

CSE 303, Spring 2005, Final Examination
7 June 2005

Please do not turn the page until everyone is ready.

Rules:

e The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

Please stop promptly at 4:20.

e You can rip apart the pages, but please write your name on each page.

There are 90 total points, distributed unevenly among 8 questions (which all have multiple parts).

e When writing code, style matters, but don’t worry about indentation.

Advice:
e Read questions carefully. Understand a question before you start writing.
e Write down thoughts and intermediate steps so you can get partial credit.

e The questions are not necessarily in order of difficulty. Skip around.

If you have questions, ask.

Relax. You are here to learn.

Name:

1. Consider this C program, which compiles without warning, but crashes when run:

int factorial(int x) {
if (x==1)
return 1;
return x * factorial(x-1);
}
int main(int argc, char*x*argv) {
factorial(0);
}

(a) 3pts Looking at the source code, why does the program crash?

(b) 6pts What would happen if you used gdb to run this program? Without looking at the source
code, what gdb commands would you use? What would you be able to conclude?

Solution:

(a) It overflows the stack: factorial will call itself recursively billions of times (assume 32-bit ints)
and there is not enough room for a stack that large. When the stack reaches inaccessible memory,
a segmentation-fault occurs. factorial does not expect arguments less than 1.

(b) gdb would detect the segmentation fault and allow inspection of the program’s state. Using the
backtrace command would show that the stack is full of thousands of recursive calls to factorial,
indicating that the problem almost certainly a stack overflow resulting from the way factorial
is written and/or called.

Name:

. Suppose a C program includes this code, which includes a loop that is useless. Assume that x and y
are valid pointers to legal strings (that end in *\0?) .

int f(char *x, char* y) {
int i=0;
for(; i < 10000000; ++i)
stremp(x,y) ;
return 7;

}

In the 3 separate problems below, suppose you use gprof to profile this program. You must give a
different answer for each problem.

(a) 5pts The time samples from gprof show that the program spends most of its time in strcmp,
but removing the loop from f has no noticeable effect on performance. What is the most likely
explanation?

(b) 5pts The call counts from gprof show that strcmp is called much more than any other function
and 60% of the calls to strcmp come from £, but removing the loop from £ has no noticeable effect
on performance. What is the most likely explanation?

(c) 3pts The time samples from gprof show that the program spends most of its time in strcmp
and the call counts from gprof show that strcmp is called much more than any other function
and 60% of the calls to strcmp come from £, but removing the loop from f still has no noticeable
effect on performance. What is the most likely explanation?

Solution:

(a) Most of the calls to strcmp are from other sources. Perhaps f is never even called when the
program runs.

(b) Although strcmp is called a lot, it is not where the program spends most of its time. Perhaps a
function that is called relatively few times takes a long time to execute because it has long loops.

(c) Some calls to strcmp take longer than others and the calls from f are relatively quick. For
example, suppose the arguments to f are short (e.g., one-character long), but the other calls to
strcmp pass very long strings.

Name:

. Consider this type definition for trees of integers in C and 3 functions that allegedly deallocate the
space for a tree:

#include <stdlib.h>
struct Tree {
int val;
struct Tree x* left;
struct Tree * right;
};
void free_tree_1(struct Tree * t) {
if (t == NULL)
return;
free(t);
}
void free_tree_2(struct Tree * t) {
if (t == NULL)
return;
free(t);
free_tree_2(t->left);
free_tree_2(t->right);
}
void free_tree_3(struct Tree * t) {
if (¢t == NULL)
return;
free_tree_3(t->left);
free_tree_3(t->right);
free(t);
}

(a) 8pts Explain which of the three functions is the best. Explain why the other two are not well-
written.

(b) 4pts Explain what assumption(s) the best function is implicitly making and how the function is
wrong if the assumption(s) are violated.

Solution:

(a) The third function is best. The first creates space leaks if the tree’s children are not otherwise
reachable. The second has dangling-pointer dereferences; technically you may not use t->left
or t->right after the object t points to is deallocated. The third function correctly frees the
subtrees and then frees the root node.

(b) In addition to assuming all the struct Tree * pointers point to live heap-allocated objects of
type struct Tree, the third function assumes the pointers actually form a tree. Put another way,
it assumes that there is no sharing; all the pointers are unique. If two pointers in the alleged tree
point to the same struct Tree, then the function will attempt to deallocate the object twice,
which is an error.

Name:

4. Here are the contents of three files that together form a program:

a.c:
void f(int* x, int* y) { *y = *x; }
a.h:

#ifndef A_H
#define A_H
void f(intx*);
#endif

b.c:

#include <a.h>

int main(int argc, charx*argv) {
int x;
£ (&x) ;
return O;

}

2pts Why is this program incorrect?

4pts Will gcc -c a.c; gcc -c b.c; gcec a.o b.o create an executable a.out or will there be
compiler errors? Explain.

4pts To catch this program’s error, would it help to have a.c include a.h? Explain.

4pts To catch this program’s error, would it help to use a Makefile that recompiles a.c and b.c
whenever a.h changes? Explain.

Solution:

Because £ expect two arguments, but main passes it only one.

It will create an executable. Each file is compiled separately and typechecks, but they make
different assumptions about how many arguments f takes. The linker will not catch this error for
C code.

Yes, now compiling a.c will fail (or at least give a warning) because the definition for £ does not
match its earlier declaration.

No, recompiling a.c if a.h changes does not detect the error; compiling a.c will still succeed.

Name:

5. Here are the contents of 4 files:

e a.java: class A { static boolean f() { return true; } }
e b.java:

class B { public static void main(String[] args) {
if (args.length < 3)
AfQO;
1}

e ac: int £() { return 1; }
e b.c:

int £(); // declaration of function defined in another file
int main(int argc, char *xargv) {
if (argc < 3)
£O;
return O;

}

For each of the following command sequences, explain whether the last command would succeed or
cause some sort of error. 3pts each

(a) javac a.java
javac b.java
rm A.class
java B1 23 4

(b) javac a.java
javac b.java
rm A.class
java B 1
(c) gecec -c a.c
gcc —¢c b.c
gcc -o prog a.o b.o
rm a.o
./prog 1 2 3 4

(d) gce -c a.c
gcc -c b.c
gcc -o prog a.o b.o
rm a.o

./prog 1

Solution:

(a) Succeed: Nothing in A is actually needed at run-time, so the class-loader never looks for A.class.

(b) “Class not found” error: When the call to A.f is reached, the class-loader will look for A.class,
not find it, and raise an exception.

(¢) Succeed: gec uses .o files and the linker to make an executable. After that point, the .o files are
unnecessary; all the code is in the executable.

(d) Succeed: Same reason as previous question.

Name:

. Consider this Java code, assuming that assert evaluates its argument and raises an exception if
the result is false (i.e., “the assertion fails”). (Assume there is only one thread and assertions are
“enabled”.)

class List {
Object head;
List tail;
List(Object h, List t) { head = h; tail = t; }
3
final class BackupList { // final means no subclasses, so that is not an issue
private List 1lst = null;
private List backup = null;
public List get() { return lst; }
public void add(Object obj) {
assert(lst.tail == backup); // (1)
backup = 1lst;
lst = new List(obj,lst);
assert(lst.tail == backup); // (2)
b
X

(a) 3pts A bad thing will happen when you call the add method on a BackupList. What is the bad
thing and how would you change the line marked (1) to avoid it? (Your result should still check
what (1) is attempting to check.)

(b) 3pts Would you make an analogous change to line (2). Why or why not?
(¢) 3pts Given your change to (1), can the assertion at line (1) fail? If so, how? If not, why not?
(d) 3pts Can the assertion at line (2) fail? If so, how? If not, why not?

Solution:

(a) The call to add will throw a NullPointerException on line (1) because 1st starts null. A better
assertion is assert(lst==null || 1lst.tail==backup).

(b) No, when control reaches (2), 1st cannot be null.

(¢) Yes, it can fail because get returns a reference to the list in 1st. So a client could set 1st.tail
to a different list than the one it held after a call to add.

(d) No, it cannot fail. The previous two assignment statements ensure 1st.tail and backup both
hold the list that was held in 1st when add was called.

Name:

7. This problem asks you to design a Makefile and version-control scheme for automatically generating
documentation for Java code.

Scenario:

e Assume a.java defines one class A, and b. java defines one class B.

e The javadoc program takes a Java file (e.g., a.java) that defines a class and makes an HTML
file that describes the class (e.g., a.html).

e You need to add a license agreement to the top of every HTML file that javadoc produces. The
contents of the license are in a file license. You have written a shell-script add-license that
takes an HTML file and changes it so it includes the contents of license.

(a) 8pts Write a Makefile with targets for making a.html and b.html. The generated files should
include the license. They should be remade whenever and only whenever a file that could affect
their contents has changed.

(b) 4pts Which of the files mentioned in this problem would you put in a version-control system?
Briefly justify your inclusion or exclusion of each file.

Solution:

a) a.html: a.java license add-license
J
javadoc a.java
add-license a.html

b.html: b.java license add-license
javadoc b.java
add-license b.html

(b) a.html and b.html should not go in the repository because they are automatically generated. All
the other files should: The Java and license files are inputs to make the HTML files. add-license is
a program written for this task; its contents affects the result. Also, the Makefile should go in the
repository so other developers can use it. (No points deducted for not discussing javadoc, which
should not go in the repository because it is an executable and is a tool used (not developed) by
this project.)

Name:

8. Consider this Java code. Do not assume there is only one thread.

final class A { // final means no subclasses, so that is not an issue
private int i = 0;
private Object 1k;
public void £() { synchronized (1k) { ++i; ++i; } }
public boolean g() { synchronized (1k) { return (i % 2)==0; } }

(a) 2pts Can a call to g ever return false? Why or why not?

(b) 2pts If we change the body of £ to just {++i; ++i;}, can a call to g ever return false? Why or
why not?

(c) 2pts If we change the body of g to just { return (i % 2)==0; }, can a call to g ever return
false? Why or why not?

Solution:

a) No. Only f can change i and i is always even before and after £ runs. g cannot execute its return
g
statement while f is in the middle because both methods acquire the same lock.

(b) Yes, now one thread might run g (including acquiring the lock in 1k) when another thread is
running f and has incremented i exactly once.

(¢) Yes, now one thread might run g when another thread is running £ and has (acquired the lock in
1k) and incremented i exactly once.

Solution:
Note: This question has a small bug that nobody discovered: There should be a constructor that initial-
izes 1k to a new object!

