CSE 303
Lecture 24

Inheritance in C++, continued

slides created by Marty Stepp
http://www.cs.washington.edu/303/

Recall: Investments design

\ «interface»
Asset

getMarketValue()
getProfit()
E
Stock MutualFund Cash
syinbol symbol amount
total shares: int total shares: double
total cost total cost gg:;ﬂri;ﬁwalueﬂ
Current price cCurrent price J
getM arketvalue() gethM arketvalue()
getProfit() getProfit()
DividendStock
dividencls
getM arketValued
getProfit(

e now we'd like an interface for the top-level supertype

_

e we implemented the inheritance between Stock and DividendStock

_/

2

Interfaces, abstract classes

e Java provides two special features for creating type hierarchies:

= interfaces: Sets of method declarations with no bodies.
Classes can promise to implement an interface.
Provides a supertype without any code sharing.

key benefit: polymorphism. Can treat multiple types the same way.

= abstract classes: Partially implemented classes that can have a mixture
of declarations (without bodies) and definitions (with bodies).

a hybrid between a class and an interface

e C++ does not have interfaces, but it (sort of) has abstract classes.

_ /

Pure virtual methods

class Name A
public:
virtual returntype name(parameters) = 0;

s

e pure virtual method: One that is declared but not implemented.

= |f a class has any pure virtual methods, no objects of it can be made.
We call this an abstract class.

= declared by setting the method equal to O
* must be implemented by subclasses (else they will be abstract)

_ /

An "interface"

#ifndef ASSET H
#define ASSET H

// Represents assets held in an investor's portfolio.
class Asset {

public:
virtual double cost() const = 0;
virtual double marketValue() const = 0;
virtual double profit() const = 0;

s
#tendif

e Simulate an interface using a class with all pure virtual methods

= we don't need Asset.cpp, because no method bodies are written
= other classes can extend Asset and implement the methods

Multiple inheritance

class Name : public BaseClassl, public BaseClass2,
public BaseClassN {

..,

s

e single inheritance: A class has exactly one superclass (Java)

 multiple inheritance: A class may have >= 1 superclass (C++)
= powerful
= helps us get around C++'s lack of interfaces

(can extend many abstract classes if necessary)

= can be confusing
= often leads to conflicts or strange bugs

_

Potential problems

e common dangerous pattern: "The Diamond"

= classes B and C extend A
= class D extends A and B

e problems:

= D inherits two copies of A's members

= |f Band C both define a member with
the same name, they will conflict in D

e How can we solve these problems and disambiguate?

_ /

Disambiguating

class B { // B.h
public:
virtual void methodl();
}s
class C { // C.h
public:
virtual void methodl();
}s

// D.cpp
void D::foo() {

methodl1(); // error - ambiguous reference to methodl
B: :method1(); // calls B's version

¥

e Explicit resolution is required to disambiguate the methods

_

Virtual base classes

class Name : public virtual BaseClassi, ...,
public virtual BaseClassN {

s

e declaring base classes as virtual eliminates the chance that a
base class's members will be included twice

Friends (with benefits?)

class Name A
friend class Name;

s

Thanku fo he my frind.

e 3 C++ class can specify another class or function as its friend
= the friend is allowed full access to the class's private members!
= 3 selective puncture in the encapsulation of the objects

= (should not be used often)
common usage: on overloaded operators outside a class (e.g. <<)

_ /

10

Private inheritance

class Name : private BaseClass {

s

= private inheritance: inherits behavior but doesn't tell anybody
internally in your class, you can use the inherited behavior

but client code cannot treat an object of your derived class as though it
were an object of the base class (no polymorphism/subtype)

a way of getting code reuse without subtyping/polymorphism

11

Objects in memory

A* varl = new B();

e each object in memory consists of:
= jts fields, in declaration order

= a pointer to a structure full of information
about the object's methods
(a virtual method table or vtable)

= one vtable is shared by all objects of a class

= the vtable also contains information about
the type of the object

e use g++ -fdump-class-hierarchy
_ to see memory layout

varl

\ type_info

met

nod 1

met

nod 2

met

nod 3

—/

12

Object memory layout

class A {

s

int fieldl;

virtual void ml(int
virtual void m2(int
virtual void m3(int

class B : public A {

s

float field2;
virtual void ml(int

class C : public B {

s

int field3;
virtual void m2(int

X);
X);
X);

X);

X);

int main() {
C varl;

12

12

varl

field3

field2

fieldl

| __vptr

|

vtable for class C

A::m3()
C::m2()
B::ml()
type info

/

13

Multiple inheritance layout

class A {
int fieldl;
virtual void ml(int

virtual void m2(int
}s
class B {
float field2;
virtual void m3(int
}s
class C : public A,
public B {
int field3;
virtual void m2(int
virtual void m4(int
}s

X);
X);

X);

X)

X);

@ o

int main() {
C varl;

vtable2 for class C

(B view)

B::m3()

9 | type _info

16
12

12

varl

field3

field2

K

__vptr2

fieldl

__vptrl

l

vtablel for class C

(A/C view)

C::m4()

C::m2()

A::ml()

type _info

/

14

Type-casting pointers

Person* pl = new Student(); Person

Person* p2 = new Teacher(); /\

Student Teacher

Student* sl1 = (Student*) pl; // ok
Student* s2 = (Student*) p2; // subtle bugs!

= casting up the inheritance tree works
= but if the cast fails, can introduce subtle bugs

= why is the above code a problem?

p2's vtable is the Teacher vtable; using it as a Student will cause the wrong
methods to be called, or the wrong addresses to be mapped on lookups

_ /

15

Dynamic (checked) casts

Person* pl = new Student(); Person

Person* p2 = new Teacher(); /\

Student Teacher

Student* sl = dynamic_cast<Student*>(pl); // ok
Student* s2 = dynamic_cast<Student*>(p2); // s4 == NULL

= dynamic_cast returns NULL if the cast fails
= code still crashes, but at least it doesn't behave in unexpected ways

16

Slicing

class A { ... };

class B : public A { ... }; 16
12
8
B varl; 4
A var2 = varl; // sliced! 5

var2

field4 B

field3 B

field2 A

fieldl A

__vptr

e slicing: When a derived object is converted into a base object.

= extra info from B class is lost in var2
= often, this is okay and doesn't cause any problems

= but can lead to problems if data from the "A part" of varl depends on

data from the "B part"

/

17

