
1

CSE 303
Lecture 23

Inheritance in C++

slides created by Marty Stepp

http://www.cs.washington.edu/303/

2

Case study exercise
• Represent a portfolio of a person's financial investments.

� Every asset has a cost (how much was paid for it)

and a market value (how much it is currently worth).

• The difference between these is the profit.

� Different assets compute their market value in different ways.

• Types of assets can be in a portfolio:

� A Stock has a symbol (such as "MSFT" for Microsoft), a number of

shares, the total cost paid, and a current price per share.

� A Dividend Stock is a stock that also gives back dividend payments.

� Cash is simply an amount of money. It never incurs profit or loss.

3

A possible design

• A class represents each type of asset.

� Problem: Redundancy.

� Problem: Cannot treat multiple investment types the same way

(such as putting them into a portfolio array).

4

Inheritance
• inheritance: A parent-child relationship between classes.

� a child (derived class) extends a parent (base class)

• benefits of inheritance:

� code reuse: inherit code from superclass

� polymorphism: Ability to redefine existing behaviors, so that when a

client makes calls on different objects, it can have different results.

5

A better design (Java)

• an interface represents the top-level supertype (no code sharing)

• inheritance and subclassing gives us code sharing (DividendStock)

6

Access specifiers

• declare a member as protected if:

� you don't want random clients accessing them, but

� you expect to be subclassed, and

� you don't mind for your subclasses to have access to it

visible to current class and its subclassesprotected

visible only to the current class

(even subclasses cannot directly access it)

private

visible to all other classespublic

descriptiondirectory

7

Public inheritance
#include "BaseClass.h"

class Name : public BaseClass {

...

};

� inherits all behavior from the given base class

(derived class must include base class's .h file)

• the following are not inherited:

� constructors and destructors

� the assignment operator = (if it was overridden)

8

DividendStock.h
#ifndef _DIVIDENDSTOCK_H
#define _DIVIDENDSTOCK_H

#include <string>
#include "Stock.h"

using namespace std;

// Represents a stock purchase that also pays dividends.
class DividendStock : public Stock {

private:
double m_dividends; // amount of dividends paid

public:
DividendStock(string symbol, double sharePrice = 0.0);

double dividends() const;
double marketValue() const;
void payDividend(double amountPerShare);

};

#endif

9

Inheritance and constructors

ClassName::ClassName(params)

: BaseClassName(params) {

statements;

}

• Constructors are not inherited

� but every time a subclass object is constructed, a constructor from the

base class must be called (to initialize that part of the object)

� by default, calls the base's () constructor (if one exists)

10

DividendStock.cpp
#include "DividendStock.h"

// Constructs a new stock with the given symbol and no shares.
DividendStock::DividendStock(string symbol, double sharePrice)

: Stock(symbol, sharePrice) {
m_dividends = 0.0;

}

// Returns this DividendStock's market value, which is
// a normal stock's market value plus any dividends.
double DividendStock::marketValue() const {

return shares() * sharePrice() + dividends();
}

// Returns the total amount of dividends paid on this stock.
double DividendStock::dividends() const {

return m_dividends;
}

// Records a dividend of the given amount per share.
void DividendStock::payDividend(double amountPerShare) {

m_dividends += amountPerShare * shares();
}

11

A problem
Client program's old output:

value: $1234.56

cost: $1234.56

profit: $ 0.00

value: $ 475.00

cost: $ 500.00

profit: $ -25.00

value: $3500.00

cost: $2000.00

profit: $1500.00

Client program's new output:

value: $1234.56

cost: $1234.56

profit: $ 0.00

value: $ 475.00

cost: $ 500.00

profit: $ -25.00

value: $3500.00

cost: $2000.00

profit: $1000.00

• What happened?

12

Method dispatching
• static dispatch: Method calls are looked up at compile-time.

• dynamic (virtual) dispatch: Method calls looked up at runtime.

// Stock.cpp

double Stock::profit() const {

// Stock's version of marketValue / cost is used

return marketValue() - cost();

}

• In Java, all objects' methods use dynamic dispatch automatically.

• In C++, methods use static dispatch by default.

� If you override a method, superclass code won't notice the change.

� (This is considered a mistake in the design of C++.)

13

Virtual methods
// Stock.h

class Stock {

...

public:

virtual double marketValue() const;

...

};

� If you want a method/operator to use dynamic dispatch, put the

keyword virtual in its header (in the .h, not .cpp).

� Rule of thumb: Make all methods virtual if you expect subclassing.

� Destructors should also be virtual to avoid complex leak cases.

14

Virtual dispatch example
class A {

public:
void m1() { cout << "a1" << endl; }
virtual void m2() { cout << "a2" << endl; }

};

class B : public A {
public:

void m1() { cout << "b1" << endl; }
virtual void m2() { cout << "b2" << endl; }

};

int main() {
A* var1 = new B();
var1->m1(); // a1
var1->m2(); // b2
B* var2 = new B();
var2->m1(); // b1
var2->m2(); // b2

}

15

Override with redundancy
// Stock.cpp

double Stock::marketValue() const {

return shares() * sharePrice();

}

// DividendStock.cpp

double DividendStock::marketValue() const {

return shares() * sharePrice() + dividends();

}

� DividendStock's value is really the old value plus the dividends

� We'd like the code to reflect that relationship.

16

Calling a base class method

BaseClassName::methodName(parameters)

// DividendStock.cpp

double DividendStock::marketValue() const {

return Stock::marketValue() + dividends();

}

� analogous to super.methodName() in Java

17

Virtual destructors
class B : public A { ... }

B* b = new B();

A* a = b;

delete a;

• Will the B::~B() destructor get called?

� Only if A::~A() was declared virtual.

• In what order will the destructors be called?

� ~B(), then ~A().

• Rule of thumb: Declare all destructors virtual.

