CSE 303
Lecture 23

Inheritance in C++

slides created by Marty Stepp
http://www.cs.washington.edu/303/

Case study exercise

e Represent a portfolio of a person's financial investments.

= Every asset has a cost (how much was paid for it)
and a market value (how much it is currently worth).

The difference between these is the profit.

= Different assets compute their market value in different ways.

e Types of assets can be in a portfolio:

= A Stock has a symbol (such as "MSFT" for Microsoft), a number of
shares, the total cost paid, and a current price per share.

= A Dividend Stock is a stock that also gives back dividend payments.
= Cash is simply an amount of money. It never incurs profit or loss.

A possible design

Stock DividendStock Cash
symbol _ symbol
total shares: int total shares: int amount
tatal cost total cost getMarketValue(
current price

CLUIrent price
getMarketValued divicencs

getProfit() getMarketValue(
getProfit()

e A class represents each type of asset.
= Problem: Redundancy.

= Problem: Cannot treat multiple investment types the same way
(such as putting them into a portfolio array).

Inheritance

e inheritance: A parent-child relationship between classes.
= a child (derived class) extends a parent (base class)

e benefits of inheritance:
= code reuse: inherit code from superclass

= polymorphism: Ability to redefine existing behaviors, so that when a
client makes calls on different objects, it can have different results.

ABSTRACTPRODUCT
+PRODUCT 1D

r— +PRODUCT_ID ﬁ
PRICE

BOOK COMPACTDISC

+PRODUCT_ID +PRODUCT_ID
ISBN ARTIST
AUTHOR TITLE
TITLE

TRAVELGUIDE

+PRODUCT_ID
COUNTRY

A better design (Java)

\ «interface»
Asset

getMarketValue()
getProfit()
E
Stock MutualFund Cash

syinbol symbol amount
total shares: int total shares: double
total cost total cost gg:;ﬂri;ﬁwalueﬂ
Current price cCurrent price J
getM arketvalue() gethM arketvalue()
getProfit() getProfit()

i

DividendStock

cliviclencls

getM arketValued
getProfit(

e an interface represents the top-level supertype (no code sharing)
* inheritance and subclassing gives us code sharing (DividendStock)

_ _/

Access specifiers

directory description
public visible to all other classes
private visible only to the current class
(even subclasses cannot directly access it)
protected |visible to current class and its subclasses

e declare a member as protected if:

= you don't want random clients accessing them, but

= you expect to be subclassed, and

= you don't mind for your subclasses to have access to it

Public inheritance

#include "BaseClass.h"

class Name : public BaseClass {
}s

= inherits all behavior from the given base class
(derived class must include base class's . h file)

e the following are not inherited:
= constructors and destructors

= the assignment operator = (if it was overridden)

_

DividendStock.h

#ifndef DIVIDENDSTOCK H
#define DIVIDENDSTOCK H

#include <string>
#include "Stock.h"

using namespace std;

// Represents a stock purchase that also pays dividends.
class DividendStock : public Stock {
private:

double m_dividends; // amount of dividends paid

public:
DividendStock(string symbol, double sharePrice = 0.0);

double dividends() const;
double marketValue() const;
void payDividend(double amountPerShare);

s

#tendif

Inheritance and constructors

ClassName: :ClassName (params)
: BaseClassName (params) {
statements;

e Constructors are not inherited

= but every time a subclass object is constructed, a constructor from the
base class must be called (to initialize that part of the object)

= by default, calls the base's () constructor (if one exists)

DividendStock.cpp

#include "DividendStock.h"

// Constructs a new stock with the given symbol and no shares.
DividendStock: :DividendStock(string symbol, double sharePrice)
: Stock(symbol, sharePrice) {
m_dividends = 0.0;

}

// Returns this DividendStock's market value, which is
// a normal stock's market value plus any dividends.
double DividendStock: :marketValue() const {

return shares() * sharePrice() + dividends();
}

// Returns the total amount of dividends paid on this stock.
double DividendStock::dividends() const {

return m_dividends;
}

// Records a dividend of the given amount per share.
void DividendStock: :payDividend(double amountPerShare) {
\\} m_dividends += amountPerShare * shares(); 4//

10

A problem

Client program's old output:

value:
cost:
profit:

value:
cost:
profit:

_

value:
cost:
profit:

$1234.
$1234.

$ 0.

$ 475

$ -25

$3500.
$2000.
$1500.

56
56
00

.00
$ 500.
.00

00

00
00
00

value:
cost:
profit:

value:
cost:
profit:

value:
cost:
profit:

$1234.
$1234.

$ 0.

$ 475

$3500.
$2000.
$1000.

Client program's new output:

56
56
00

.00
$ 500.
$ -25.

00
00

00
00
00

e What happened?

11

Method dispatching

e static dispatch: Method calls are looked up at compile-time.
e dynamic (virtual) dispatch: Method calls looked up at runtime.

// Stock.cpp

double Stock::profit() const {
// Stock's version of marketValue / cost is used
return marketValue() - cost();

* In Java, all objects' methods use dynamic dispatch automatically.

e In C++, methods use static dispatch by default.

= |f you override a method, superclass code won't notice the change.

\ = (This is considered a mistake in the design of C++.) /

12

Virtual methods

// Stock.h
class Stock {

public:
virtual double marketValue() const;

s

= |f you want a method/operator to use dynamic dispatch, put the
keyword virtual in its header (in the . h, not . cpp).

= Destructors should also be virtual to avoid complex leak cases.

_

= Rule of thumb: Make all methods virtual if you expect subclassing.

/

13

Virtual dispatch example

class A {
public:
void ml() { cout << "al" << endl; }
virtual void m2() { cout << "a2" << endl; }
}s
class B : public A {
public:
void ml() { cout << "bl" << endl; }
virtual void m2() { cout << "b2" << endl; }
}s

int main() {
A* varl = new B();

varl->ml(); // al
varl->m2(); // b2
B* var2 = new B();

var2->ml(); // bl
var2->m2(); // b2

14

Override with redundancy

// Stock.cpp
double Stock: :marketValue() const {
return shares() * sharePrice();

¥

// DividendStock.cpp
double DividendStock: :marketValue() const {
return shares() * sharePrice() + dividends();

¥

= DividendStock's value is really the old value plus the dividends
= We'd like the code to reflect that relationship.

_ /

15

Calling a base class method

BaseClassName : :methodName (parameters)

// DividendStock.cpp
double DividendStock: :marketValue() const {
return Stock::marketValue() + dividends();

¥

= analogous to super.methodName () in Java

16

Virtual destructors

class B : public A { ... }

B* b = new B();
A* a = b;
delete a;

e Will the B: :~B() destructor get called?
= Onlyif A::~A() was declared virtual.

e In what order will the destructors be called?
= ~B(), then ~A().

e Rule of thumb: Declare all destructors virtual.

_

17

