
1

CSE 303
Lecture 19

Version control and Subversion (svn)

slides created by Marty Stepp

http://www.cs.washington.edu/303/

2

Working in teams
Whose computer stores the "official" copy of the project?

• Can we store the project files in a neutral "official" location?

Will we be able to read/write each other's changes?
• Do we have the right file permissions?

What happens if we both try to edit the same file?

What happens if we make a mistake and corrupt an important file?
• Is there a way to keep backups of our project files?

How do I know what code each teammate is working on?

3

Recall: Groups and users

• setting groups on files: chgrp group filename
chgrp -R cse303k * (set group of all to cse303k)

• permission codes: chmod who(+-)what filename
chmod -R g+rwX * (group can read/write all)

change permissions for a filechmod
set default permissions for new filesumask

change the group associated with a filechgrp
list the groups to which a user belongsgroups

descriptioncommand

4

Version control
• version control system: Software that tracks and manages changes

to a set of source code files and resources.
examples: CVS, Subversion (SVN), Git, Monotone, BitKeeper, Perforce

• helps teams to work together on code projects
a shared copy of all code files that all users can access

keeps current versions of all files, and backups of past versions

can see what files others have modified and view the changes

manages conflicts when multiple users modify the same file

not particular to source code; can be used for papers, photos, etc.
• but often works best with plain text/code files

5

Repositories
• repository: Central location storing a copy of all files.

check in: adding a new file to the repository

check out: downloading a file from the repo to edit it
• you don't edit files directly in the repo; you edit a local working copy

• once finished, the user checks in a new version of the file

commit: checking in a new version of a file(s) that were checked out

revert: undoing any changes to a file(s) that were checked out

update: downloading the latest versions of all files that have been
recently committed by other users

6

Subversion

• Subversion: created to repair problems with older CVS system
supports folders, better renaming, atomic commits, good branching

currently the most popular free open-source version control system

• installing in Ubuntu:
$ sudo apt-get install subversion

• creating a repository:
$ svnadmin create path

make administrative changes to an SVN repositorysvnadmin
interact with an SVN repositorysvn

descriptioncommand

7

SVN commands

adds a directory into repo as a projectsvn import directory

others: blame, changelist, cleanup, diff, export, ls/mv/rm/mkdir,
lock/unlock, log, propset

restore local copy to repo's versionsvn revert files

schedule files to be added at next commitsvn add files

get help info about a particular commandsvn help [command]

update local copy to latest versionsvn update [files]

commit / check in changed filessvn ci [files]

resolve merging conflictssvn resolve source path

merge changessvn merge source path

check outsvn co files

descriptioncommand

8

Setting up a repo
• on attu, create the overall repository:

$ svnadmin create path

• from attu, add initial files into the repo (optional):
$ svn import projectname foldername

• give the repo read/write permissions to your cse303 group
$ chgrp -R mycse303group repofoldername
$ chmod -R g+rwX,o-rwx repofoldername

9

Adding files to a repo
• on your computer, set up a local copy of the repo

$ svn co svn+ssh://attu.cs.washington.edu/foldername

or, if you're setting up your local copy on attu as well:
$ svn co file:///homes/iws/username/foldername

after checkout, your local copy "remembers" where the repo is

• now copy your own files into the repo's folder and add them:
$ svn add filename
common error: people forget to add files (won't compile for others)

• added files are not really sent to server until commit
$ svn ci filename -m "checkin message"
put source code and resources into repo (no .o files, executables)

10

Committing changes
• updating (to retrieve any changes others have made):

$ svn update

• examining your changes before commit:
$ svn status
$ svn diff filename
$ svn revert filename

• committing your changes to the server:
$ svn ci -m "added O(1) sorting feature"

11

Shell/IDE integration

Linux:
NautilusSVN

Windows:
TortoiseSVN

Eclipse:
Subclipse

12

Merging and conflicts
• merge: Two sets of changes applied at same time to same files

happens when two users check out same file(s), both change it, and:
• both commit, or
• one changes it and commits; the other changes it and does an update

• conflict: when the system is unable to reconcile merged changes
resolve: user intervention to repair a conflict. Possible ways:

• combining the changes manually in some way
• selecting one change in favor of the other
• reverting both changes (less likely)

13

Branches
• branch (fork): A second copy of the files in a repository

the two copies may be developed in different ways independently

given its own version number in the version control system

eventually be merged

trunk (mainline, baseline): the main code copy, not part of any fork

