CSE 303
Lecture 16

Multi-file (larger) programs

reading: Programming in C Ch. 15

slides created by Marty Stepp
http://www.cs.washington.edu/303/

Motivation

e single-file programs do not work well when code gets large
= compilation can be slow
= hard to collaborate between multiple programmers
" more cumbersome to edit

e |arger programs are split into multiple files
= each file represents a partial program or module
= modules can be compiled separately or together
= a module can be shared between multiple programs

Partial programs

e A .c file can contain a partial program:
#include <stdio.h>

void f1(void) { // partl.c
printf("this is f1\n");
}

e such a file cannot be compiled into an executable by itself:

$ gcc partl.c

/usr/lib/gcc/crtl.o: In function ~ start':
(.text+0x18): undefined reference to "main'
collect2: 1ld returned 1 exit status

Using a partial program

e We have part2.c that wants to use the code from partl.c:
#include <stdio.h>

void f2(void); // part2.c

int main(void) {
f1(); // not defined!
£2();

}

void f2(void) {
printf("this is f2\n");
}

e The program will not compile by itself:

$ gcc -o combined part2.c
In function "main':

_ part2.c:6: undefined reference to "f1°

Including .c files (bad)

e One solution (bad style): include partl.cinpart2.c

#include <stdio.h>
#include "partl.c" // note "" not <>

void f2(void);

int main(void) {
f1(); // defined in partl.c
t2();

¥

void f2(void) {
printf("this is f2\n");
}

e The program will compile successfully:

\\¥ $ gcc -g -Wall -o combined part2.c

Multi-file compilation

#include <stdio.h>

void f2(void); // part2.c

int main(void) {
1(); // not defined?
£2();

}

void f2(void) {
printf("this is f2\n");
}

e The gcc compiler can accept multiple source files to combine:

$ gcc -g -Wall -o combined partl.c part2.c
$./combined

this is f1

\\¥ this is 2

Object (.o0) files

e A partial program can be compiled into an object (.0) file with -c :

$ gcc -g -Wall -c partl.c
$ 1s
partl.c partl.o part2.c

= a .o fileis a binary blob of compiled C code that cannot be directly
executed, but can be directly inserted into a larger executable later

e You can compile a mixture of .c and .o files:

$ gcc -g -Wall -o combined partl.o part2.c

= avoids recompilation of unchanged partial program files

_

The compilation process

e each step's output can be dumped to a file, depending on
arguments passed to gcc

Editor

.c file

Preprocessor

)

‘_Fp

reprocessed

C file

Compiler

|C Exec utablej|<_ Linker

.0 file

Problem

e with the previous code, we can't safely create part2.o:

$ gcc -g -Wall -c part2.c
part2.c: In function main':
part2.c:6: warning: implicit declaration of function " f1°

e The compiler is complaining because f1 does not exist.
= But it will exist once partl.c/ois added in later

e we'd like a way to be able to declare to the compiler that certain
things will be defined later in the compilation process...

_ _/

Header files

e header : A C file whose only purpose is to be included.

= generally a filename with the . h extension
= holds shared variables, types, and function declarations

e key ideas:

= every name. c intended to be a module has a name . h
= name.h declares all global functions/data of the module
= other . c files that want to use the module will #include name . h

® some conventions:

_

= ¢ files never contain global function prototypes

= _h files never contain definitions (only declarations)

= never #include a .c file (only . h files)

= any file with a .h file should be able to be built into a . o file

10

Exercise

e Write a program that can maintain a linked list of integers.
= You should have functions for printing a linked list and summing it.

= The main function should create a list, put some elements in it, and
print/sum them.

e Appropriately divide your program into multiple . c and . h files.

data | next data | next data | next

front

11

Multiple inclusion

e problem : if multiple modules include the same header, the
variables/functions in it will be declared twice

e solution : use preprocessor to introduce conditional compilation
= convention: ifndef/define with a variable named like the .h file
= first time file is included, the preprocessor won't be defined
= on inclusions by other modules, will be defined — not included again

#ifndef FOO H
#define _FOO_H
. // contents of foo.h

#tendif

12

Global visibility

// example.c
int passcode = 12345;

// example2.c

int main(void) {
printf("Password is %d\n", passcode);
return 9;

¥

e by default, global variables/functions defined in one module can be
seen and used by other modules it is compiled with

= problem : gcc compiles each file individually before linking them

= ifexample2.cis compiled separately into a .o file, its reference to
passcode will fail as being undeclared

_

13

extern

// example2.c
extern int passcode;

printf("Password is %d\n", passcode);

e extern (when used on variables/functions) :
= does not actually define a variable/function or allocate space for it
= instead, promises the compiler that some other module will define it

= allows your module to compile even with an undeclared

to some other module that declares that variable/function
if example.c and example2. c are linked together, the above will work

variable/function reference, so long as eventually its . o0 object is linked

14

static

// example.c
int passcode = 12345; // public
static int admin_passcode = 67890; // private

e static (when used on global variables/functions) :
= visible only to the current file/module (sort of like Java's private)
= declare things static if you do not want them exposed

= avoids potential conflicts with multiple modules that happen to declare
global variables with the same names

= passcode will be visible through the rest of example. ¢, but not to
any other modules/files compiled with example.c

_ _/

15

Function static data

e When used inside a function:

= declares a static local variable that will be remembered across calls

static type name = value;

Example:

int nextSquare() {

¥

static int n = 0;

static int increment = 1;
n += increment;

increment += 2;

return n;

nextSquare() returns 1, then 4, then9, then 16, ...

16

