
1

CSE 303
Lecture 16

Multi-file (larger) programs

reading: Programming in C Ch. 15

slides created by Marty Stepp

http://www.cs.washington.edu/303/

2

Motivation
• single-file programs do not work well when code gets large

compilation can be slow

hard to collaborate between multiple programmers

more cumbersome to edit

• larger programs are split into multiple files
each file represents a partial program or module

modules can be compiled separately or together

a module can be shared between multiple programs

3

Partial programs
• A .c file can contain a partial program:

#include <stdio.h>

void f1(void) { // part1.c
printf("this is f1\n");

}

• such a file cannot be compiled into an executable by itself:

$ gcc part1.c
/usr/lib/gcc/crt1.o: In function `_start':
(.text+0x18): undefined reference to `main'
collect2: ld returned 1 exit status

4

Using a partial program
• We have part2.c that wants to use the code from part1.c:

#include <stdio.h>

void f2(void); // part2.c

int main(void) {
f1(); // not defined!
f2();

}

void f2(void) {
printf("this is f2\n");

}

• The program will not compile by itself:

$ gcc -o combined part2.c
In function `main':
part2.c:6: undefined reference to `f1'

5

Including .c files (bad)
• One solution (bad style): include part1.c in part2.c

#include <stdio.h>
#include "part1.c" // note "" not <>

void f2(void);

int main(void) {
f1(); // defined in part1.c
f2();

}

void f2(void) {
printf("this is f2\n");

}

• The program will compile successfully:

$ gcc -g -Wall -o combined part2.c

6

Multi-file compilation
#include <stdio.h>

void f2(void); // part2.c

int main(void) {
f1(); // not defined?
f2();

}

void f2(void) {
printf("this is f2\n");

}

• The gcc compiler can accept multiple source files to combine:

$ gcc -g -Wall -o combined part1.c part2.c
$./combined
this is f1
this is f2

7

Object (.o) files
• A partial program can be compiled into an object (.o) file with -c :

$ gcc -g -Wall -c part1.c
$ ls
part1.c part1.o part2.c

a .o file is a binary blob of compiled C code that cannot be directly
executed, but can be directly inserted into a larger executable later

• You can compile a mixture of .c and .o files:

$ gcc -g -Wall -o combined part1.o part2.c

avoids recompilation of unchanged partial program files

8

The compilation process
• each step's output can be dumped to a file, depending on

arguments passed to gcc

9

Problem
• with the previous code, we can't safely create part2.o :

$ gcc -g -Wall -c part2.c
part2.c: In function `main':
part2.c:6: warning: implicit declaration of function `f1'

• The compiler is complaining because f1 does not exist.
But it will exist once part1.c/o is added in later

• we'd like a way to be able to declare to the compiler that certain
things will be defined later in the compilation process...

10

Header files
• header : A C file whose only purpose is to be included.

generally a filename with the .h extension
holds shared variables, types, and function declarations

• key ideas:
every name.c intended to be a module has a name.h
name.h declares all global functions/data of the module
other .c files that want to use the module will #include name.h

• some conventions:
.c files never contain global function prototypes
.h files never contain definitions (only declarations)
never #include a .c file (only .h files)
any file with a .h file should be able to be built into a .o file

11

Exercise
• Write a program that can maintain a linked list of integers.

You should have functions for printing a linked list and summing it.

The main function should create a list, put some elements in it, and
print/sum them.

• Appropriately divide your program into multiple .c and .h files.

10

nextdata
NULL30

nextdata
front

20

nextdata

12

Multiple inclusion
• problem : if multiple modules include the same header, the

variables/functions in it will be declared twice

• solution : use preprocessor to introduce conditional compilation
convention: ifndef/define with a variable named like the .h file

first time file is included, the preprocessor won't be defined

on inclusions by other modules, will be defined → not included again

#ifndef _FOO_H
#define _FOO_H
... // contents of foo.h
#endif

13

Global visibility
// example.c
int passcode = 12345;

// example2.c
int main(void) {

printf("Password is %d\n", passcode);
return 0;

}

• by default, global variables/functions defined in one module can be
seen and used by other modules it is compiled with

problem : gcc compiles each file individually before linking them

if example2.c is compiled separately into a .o file, its reference to
passcode will fail as being undeclared

14

extern
// example2.c
extern int passcode;
...
printf("Password is %d\n", passcode);

• extern (when used on variables/functions) :
does not actually define a variable/function or allocate space for it

instead, promises the compiler that some other module will define it

allows your module to compile even with an undeclared
variable/function reference, so long as eventually its .o object is linked
to some other module that declares that variable/function
• if example.c and example2.c are linked together, the above will work

15

static
// example.c
int passcode = 12345; // public
static int admin_passcode = 67890; // private

• static (when used on global variables/functions) :
visible only to the current file/module (sort of like Java's private)

declare things static if you do not want them exposed

avoids potential conflicts with multiple modules that happen to declare
global variables with the same names

passcode will be visible through the rest of example.c, but not to
any other modules/files compiled with example.c

16

Function static data
• When used inside a function:

static type name = value;

declares a static local variable that will be remembered across calls

Example:

int nextSquare() {
static int n = 0;
static int increment = 1;
n += increment;
increment += 2;
return n;

}

nextSquare() returns 1, then 4, then 9, then 16, ...

