
1

CSE 303
Lecture 14

Strings in C

reading: Programming in C Ch. 9; Appendix B

slides created by Marty Stepp

http://www.cs.washington.edu/303/

2

Type char
• char : A primitive type representing single characters.

literal char values have apostrophes: 'a' or '4' or '\n' or '\''

char letter = 'S';
printf("%c", letter); // S

• you can compare char values with relational operators
'a' < 'b' and 'X' == 'X' and 'Q' != 'q'

An example that prints the alphabet:

for (char c = 'a'; c <= 'z'; c++) {
System.out.print(c);

}

3

char and int
• chars are stored as integers internally (ASCII encoding)

'A' is 65, 'B' is 66, ' ' is 32, '\0' is 0
'a' is 97, 'b' is 98, '*' is 42, '\n' is 10

char letter = 'S';
printf("%d", letter); // 83

mixing char and int causes automatic conversion to int
'a' + 2 is 99, 'A' + 'A' is 130

to convert an int into the equivalent char, type-cast it
(char) ('a' + 2) is 'c'

4

Strings
• in C, strings are just arrays of characters (or pointers to char)

• the following code works in C:

char greet[7] = {'H', 'i', ' ', 'y', 'o', 'u'};
printf(greet); // output: Hi you

• the following versions also work and are equivalent:

char greet[7] = "Hi you";
char greet[] = "Hi you";

Why does the word array have 7 elements?

5

Null-terminated strings
• in C, strings are null-terminated (end with a 0 byte, aka '\0')

• string literals are put into the "code" memory segment
technically "hello" is a value of type const char*

char greet[7] = {'H', 'i', ' ', 'y', 'o', 'u'};
char* seeya = "Goodbye";

greet

seeya

char

index

'\0''u''o''y'' ''i''H'

5 643210

'e'

6

char

index

'\0''y''b''d''o''o''G'

5 743210

(stack)

(heap)

6

String input/output
char greet[7] = {'H', 'i', ' ', 'y', 'o', 'u'};
printf("Oh %8s!", greet); // output: Oh hi you!

char buffer[80] = {'\0'}; // input
scanf("%s", buffer);

scanf reads one word at a time into an array (note the lack of &)

if user types more than 80 chars, will go past end of buffer (!)

• other console input functions:
gets(char*) - reads an entire line of input into the given array

getchar() - reads and returns one character of input

7

Looping over chars
• don't need charAt as in Java; just use [] to access characters

int i;
int s_count = 0;
char str[] = "Mississippi";
for (i = 0; i < 11; i++) {

printf("%c\n", str[i]);
if (str[i] == 's') {

s_count++;
}

}
printf("%d occurrences of letter s\n", s_count);

8

String literals
• when you create a string literal with "text", really it is just a
const char* (unchangeable pointer) to a string in the code area

// pointer to const string literal
char* str1 = "str1"; // ok
str1[0] = 'X'; // not ok

// stack-allocated string buffer
char str2[] = "str2"; // ok
str2[0] = 'X'; // ok

// but pointer can be reassigned
str1 = "new"; // ok
str2 = "new"; // not ok

code
global data

heap

available

main
str1

str2

1 \0rts

2 \0rts

\0wen

9

Pointer arithmetic
• adding/subtracting n from a pointer shifts the address by n times

the size of the type being pointed to
Example: Adding 1 to a char* shifts it ahead by 1 byte
Example: Adding 1 to an int* shifts it ahead by 4 bytes

char[] s1 = "HAL";
char* s2 = s1 + 1; // points to 'A'

int a1[3] = {10, 20, 30, 40, 50};
int* a2 = a1 + 2; // points to 30
a2++; // points to 40

for (s2 = s1; *s2; s2++) {
*s2++; // what does this do?

}

10

Strings as user input
char buffer[80] = {0};
scanf("%s", buffer);

reads one word (not line) from console, stores into buffer

• problem : possibility of going over the end of the buffer
fix: specify a maximum length in format string placeholder

scanf("%79s", buffer); // why 79?

• if you want a whole line, use gets instead of scanf
• if you want just one character, use getchar (still waits for \n)

11

String library functions
• #include <string.h>

breaks apart s into tokens by delimiter delimchar* strtok(s, delim)

allocates and returns a copy of schar* strdup(s)

length-limited versions of above functionsstrncpy, strncat, strncmp

returns length of string s until \0int strlen(s)

returns index of first occurrence of s2 in s1int strstr(s1, s2)
returns index of first occurrence of c in sint strchr(s, c)

copies string characters from src into dststrcpy(dst, src)

concatenates s2 onto the end of s1 (puts \0)strcat(s1, s2)
returns < 0 if s1 comes before s2 in ABC order;
returns > 0 if s1 comes after s2 in ABC order;
returns 0 if s1 and s2 are the same

int strcmp(s1, s2)

descriptionfunction

12

Comparing strings
• relational operators (==, !=, <, >, <=, >=) do not work on strings

char* str1 = "hello";
char* str2 = "hello";
if (str1 == str2) { // no

• instead, use strcmp library function (0 result means equal)

char* str1 = "hello";
char* str2 = "hello";
if (!strcmp(str1, str2)) {

// then the strings are equal
...

}

13

More library functions

• #include <ctype.h> (functions for chars)

isalpha('A') returns a nonzero result (true)

converts string to floating-pointdouble atof(s)
converts string (ASCII) to integerint atoi(s)

writes formatted text into ssprintf(s, format, params)
reads formatted tokens from ssscanf(s, format, params)

descriptionfunction

tests info about a single characterint isalnum(c),
isalpha, isblank, isdigit,
islower, isprint, ispunct,
isspace, isupper, isxdigit,
tolower, toupper

descriptionfunction

14

Copying a string
• 1. copying a string into a stack buffer:

char* str1 = "Please copy me";
char str2[80]; // must be >= strlen(str1) + 1
strcpy(str2, str1);

• 2. copying a string into a heap buffer (you must free it):

char* str1 = "Please copy me";
char* str2 = strdup(str1);

• 3. do it yourself (hideous, yet beautiful):

char* str1 = "Please copy me";
char str2[80];
while (*s2++ = *s1++); // why does this work?

