CSE 303
Lecture 11

Heap memory allocation (malloc, free)

reading: Programming in C Ch. 11, 17

slides created by Marty Stepp
http://www.cs.washington.edu/303/

Lecture summary

e arrays as parameters and returns
= arrays vs. pointers

e the heap
= dynamic memory allocation (malloc, calloc, free)
= memory leaks and corruption

Process memory layout

OXFFFFFFFF

address
space

0x00000000

_

stack
(function calls)

available memory

heap
(dynamically allocated data)

global/static variables
("data segment")

code instructions
("text segment")

e as functions are called,
data goes on a stack

e dynamic data is
created on a heap

The sizeof operator

#include <stdio.h>

int main(void) {

¥

_

int x;
int a[5];

printf("int=%d, double=%d\n", sizeof(int), sizeof(double));
printf("x uses %d bytes\n", sizeof(x));

printf("a uses %d bytes\n", sizeof(a));

printf("a[@] uses %d bytes\n", sizeof(a[0]));

return 9;

Output:

int=4, double=8

X uses 4 bytes

a uses 20 bytes
a[@] uses 4 bytes

sizeof continued

e sizeof(type) or (variable) returns memory size in bytes
= arrays passed as parameters do not remember their size

#include <stdio.h>
void f(int a[]);

int main(void) {
int a[5];
printf("a uses %d bytes\n", sizeof(a));

f(a);
return 9;

¥

void f(int a[]) {
printf("a uses %2d bytes in f\n", sizeof(a));

Output:
a uses 20 bytes

a uses 4 bytes in f

Arrays and pointers

e 3 pointer can point to an array element
= an array's name can be used as a pointer to its first element

= you can use [] notation to treat a pointer like an array
pointer[1i] is 1 elements' worth of bytes forward from pointer

int a[5] = {10, 20, 30, 40, 50},

int* pl = &a[3]; // refers to a's fourth element

int* p2 = &a[0@]; // refers to a's first element

int* p3 = a; // refers to a's first element as well
*pl = 100;

*p2 = 200;

pl[1] = 300;

p2[1] = 400;

p3[2] = 500;

Final array contents:

{200, 400, 500, 100, 300} 4//

_

Arrays as parameters

e array parameters are really passed as pointers to the first element
= The [] syntax on parameters is allowed only as a convenience

// actual code: // equivalent to:

#include <stdio.h> #include <stdio.h>

void f(int a[]); void f(int* a);

int main(void) { int main(void) {
int a[5]; int a[5];
f(a); f(&a[el);
return 0; return 0;

} }

void f(int a[]) { void f(int* a) {

} }

_ _/

Returning an array

e stack-allocated variables disappear at the end of the function

= this means an array cannot be safely returned from a method

int[] copy(int a[], int size);

int main(void) {
int nums[4] = {7, 4, 3, 5};
int nums2[4] = copy(nums, 4);

return 0;
}
int[] copy(int a[], int size) {
int 1i;
int a2[size];
for (1 = 0; 1 < size; i++) {
az2[i] = a[i];
}
return az2; // no
}

_

// no

main
nums, nums2

copy
a, Size
a2, i

heap

global data

code

Pointers don't help

e dangling pointer: One that points to an invalid memory location.

int* copy(int a[], int size);

int main(void) {
int nums[4] = {7, 4, 3, 5};
int* nums2 = copy(nums, 4);
// nums2 dangling here

}

int* copy(int a[], int size) {
int i;
int a2[size];
for (1 = 9; 1 < size; i++) {
a2[i] = a[i];
}

return az2;

_)

hums 7|4 | 3

nums I/_

main

a2

// copy

Vi
Sslze

7

413|5]|1

heap

global data

code

Our conundrum

e We'd like to have data in our C programs that is:
= dynamic (size of array changes based on user input, etc.)
= |long-lived (doesn't disappear after the function is over)
= bigger (the stack can't hold all that much data)

e Currently, our solutions include:
= declaring variables in main and passing as "output parameters"
= declaring global variables (do not want)

10

The heap

e heap (or "free store"): large pool of unused memory that you can
use for dynamically allocating data and objects

= for dynamic, long-lived, large data

= many languages (e.g. Java) place
all arrays/ objects on the heap

// Java
int[] a new int[5];
Point p = new Point(8, 2);

0x086D0008
0x086D0004

OxO0FD8000
OxO0FD30FO0

d

P

stack

0x00FD8000

J0x00FD30F0

//available

/

heap

0

0{0|0]|5

2

methods

global data

code

11

malloc

variable = (type*) malloc(size);

e malloc function allocates a heap memory block of a given size

= returns a pointer to the first byte of that memory

= you should cast the returned pointer to the appropriate type

= jnitially the memory contains garbage data

= often used with sizeof to allocate memory for a given data type

// int
int* a
al[@] =
al[l] =

al8]; <-- stack equivalent

= (int*) malloc(8 * sizeof(int));
10;
20;

12

calloc

variable = (type*) calloc(count, size);

e calloc functionis like malloc, but it zeros out the memory

= also takes two parameters, number of elements and size of each
= preferred over malloc for avoiding bugs (but slightly slower)

// int a[8] = {0}; <-- stack equivalent
int* a = (int*) calloc(8, sizeof(int));

e malloc and calloc are found in library stdlib.h
#include <stdlib.h>

_

13

Returning a heap array

e when you want to return an array, malloc it and return a pointer

= array will live on after the function returns

int* copy(int a[], int size);

int main(void) {

}

int nums[4] = {7, 4, 3, 5};
int* nums2 = copy(nums, 4);

return 0;

int* copy(int a[], int size) {

int i;
int* a2 = malloc(size * sizeof(int));
for (1 = 9; 1 < size; i++) {
a2[i] = a[i];
}

return az2;

main

global data

code

14

NULL

e NULL: An invalid memory location that cannot be accessed.
= inC, NULL is a global constant whose value is O
= ifyoumalloc/calloc but have no memory free, it returns NULL
= you can initialize a pointer to NULL if it has no meaningful value
= dereferencing a null pointer will crash your program

int* p = NULL;
*p = 42; // segfault

e Exercise : Write a program that figures out how large the stack and
heap are for a default C program.

_ _/

15

Deallocating memory

e heap memory stays claimed until the end of your program

e garbage collector: A process that automatically reclaims memory
that is no longer in use.

= keeps track of which variables point to which memory, etc.
= used in Java and many other modern languages; notin C

// Java
public static int[] f() {
int[] a = new int[1000];
int[] a2 = new int[1000];
return az2;
} // no variables refer to a here; can be freed

_

16

Memory leaks

e memory leak: Failure to release memory when no longer needed.
= easytodoinC

= can be a problem if your program will run for a long time
when your program exits, all of its memory is returned to the OS

void f(void) {
int* a = (int*) calloc(1000, sizeof(int));

} // oops; the memory for a is now lost

17

free

free(pointer);

e releases the memory pointed to by the given pointer

= precondition: pointer must refer to a heap-allocated memory block
that has not already been freed

int* a = (int*) calloc(8, sizeof(int));
free(a);
= jtis considered good practice to set a pointer to NULL after freeing

free(a);
a = NULL;

_

18

Memory corruption

e if the pointer passed to free doesn't point to a heap-allocated
block, or if that block has already been freed, bad things happen

int* al = (int*) calloc(1000, sizeof(int));

int a2[1000];

int* a3;

int* a4 = NULL;

free(al);
free(al);
free(a);
free(a3);
free(ad);

// ok
// bad (already freed)

// bad (not heap allocated)
// bad (not heap allocated)
// bad (not heap allocated)

e you're lucky if it crashes, rather than silently corrupting something

_

19

