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CSE 303
Lecture 8

Intro to C programming

read C Reference Manual
pp. Ch. 1, 2.2 - 2.4, 2.6, 3.1, 5.1, 7.1 - 7.2, 7.5.1 - 7.5.4, 7.6 - 7.9, Ch. 8;

Programming in C Ch. 1-6

slides created by Marty Stepp

http://www.cs.washington.edu/303/
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Lecture summary
• History and characteristics of C

• major C language features
differences between C and Java

• basic console input and output (printf and scanf)

• Our learning objectives in C:
procedural programming
deeper understanding of program compilation and execution
learn details of memory management
debugging skills
software development strategies
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History
• created in 1972 by Dennis Ritchie of Bell Labs

to accompany the Unix operating system
latest version standard: "C99" (1999)

• designed for creating system software
(programs close to the OS that talk directly to hardware)

also designed to be hardware-independent (portable)

C is also used to develop high-level applications

• currently the 1st or 2nd most widely used language worldwide

• based on ALGOL; has influenced the designs of many languages
C++, Java, C#, Perl, PHP, JavaScript, Objective-C, D, ...
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Characteristics of C
• fairly similar basic syntax and semantics to Java

if/else, for, while, int, double,  {} [] () ; +- */% ++

• much smaller provided standard library / API than Java

• more low-level (more work for programmer, less for compiler)

• procedural  (not object-oriented)
C (essentially) does not have objects as we know them

verb(noun); rather than  noun.verb();

• more unsafe (an incorrect program can cause more damage)
C programs have more direct access to the system / hardware
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First C program

#include <stdio.h>

int main(void) {
printf("Hello, world!\n");
return 0;

}

• Kernighan and Ritchie started the convention that the first program you 
show in a new language should be one that prints "Hello, world!"
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Dissecting Hello World

#include <stdio.h>

int main(void) {

printf("Hello, world!\n");

return 0;

}

like import in Java;
links the program to

the standard I/O library
(includes printf function)

the main function header;
you don't need to say public static

because these are the default in C

main returns an int error code to the OS
(0 on success, > 0 on failure)

like println in Java
(actually more like

System.out.printf);
prints output to console
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Second C program
/* Computes greatest common divisor (GCD) with Euclid's algorithm. */
#include <stdio.h>

int main(int argc, char** argv) {
int a, b, temp, r;

printf("Please enter two positive integers: ");
scanf("%d %d", &a, &b);

if (b > a) {
temp = a;
a = b;
b = temp;

}

while ((r = a % b) != 0) {
a = b;
b = r;

}

printf("The GCD is %d.\n", b);
return 0;

}
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Compiling/running

• to compile a program, type:
gcc -o target source.c

(where target is the name of the executable program to build)

the compiler builds an actual executable file, not a .class like Java

example: gcc -o hi hello.c

• to run your program, just execute that file
example: ./hi

GNU C compilergcc

descriptioncommand
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gcc options (partial)

• most common usage for this course:
gcc -g -Wall -o target source.c

the warnings from -Wall will protect us from unwise idioms

generates information for debugger tools-g

output executable file name
(if omitted, compiles to file  a.out )

-o

level of warnings to display
(common usage:  -Wall for all warnings)

-W

descriptionoption
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printf

printf("format string", parameters);

• A format string contains placeholders to insert parameters into it:
%d or %i an integer
%lf a double ('long floating-point')
%s a string
%p a pointer (seen later)

int x = 3;
int y = 2;
printf("(%d, %d)\n", x, y);   // (3, 2)

prints formatted output to consoleprintf

descriptionfunction
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printf continued
• A placeholder can specify the parameter's width or precision:

%8d an integer, 8 characters wide, right-aligned
%-8d an integer, 8 characters wide, left-aligned
%.4f a real number, 4 digits after decimal
%6.2f a real number, 6 total characters wide, 2 after decimal

Examples:
int age = 45;
double gpa = 1.2345678;

printf("%8d %7.3f\n", age, gpa);
printf("%8.2f %.1f %10.5f", gpa, gpa, gpa);

Output:
45   1.234

1.23 1.2    1.23457
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Same as Java
• general syntax for statements, control structures, function calls

• types int, double, char, long
type-casting syntax

• expressions, operators, precedence
+ - * / % ++ --
= += -= *= /= %=
< <= == != > >= && || !

• scope (within set of { } braces)

• comments:  /* ... */,     // ( // not officially legal until C99)
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Mostly the same as Java
• variables

can be used without being initialized (!)

must be declared at the start of a function or block    (changed in C99)

• for loops
variable cannot be declared in the loop header

• if/else statements,   while and do/while loops
there is no boolean type (changed in C99)

any type of value can be used as a test

0 means false, every other number means true

• parameters / returns
C has certain features for values vs. references ("pointers")
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Very different from Java
• Strings

very clunky to use in C;   essentially just arrays of characters

are not objects;  do not contain methods (external string functions)

• I/O to console and files
no Scanner;  must use input functions such as scanf
console I/O different than file I/O

• errors and exceptions
C has no try/catch and does not represent errors as objects

errors are usually returned as integer error codes from functions

crashes are mostly called "segmentation faults" and are evil
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Also very different
• arrays

are just bare contiguous blocks of memory
have no methods and do not know their own length (!)

• objects
C doesn't have them
closest similar feature:  struct (a set of fields; no methods)

• memory management
most memory that you consume, you must explicitly free afterward

• API and provided libraries
C doesn't have very many, compared to Java
you must write many things yourself (even data structures)
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scanf

scanf("format string", variables);

uses same syntax for formatted strings, placeholders as printf
•doubles use %lf ('long float')

must precede each variable with an & (address-of operator)

int x;
int y;
printf("Type your x and y values: ");
scanf("%d %d", &x, &y);

reads formatted input from consolescanf

descriptionfunction
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scanf continued
• scanf returns the number of values successfully read

can be examined to see whether the reading was successful

• if # of variables listed doesn't match # of format placeholders:
too many variables: later ones ignored

too few variables: program crashes!

• string can be complex to match a specific input pattern
int x;
int y;
printf("What is your (x, y) point?\n");
scanf("My point is (%d, %d)", &x, &y);
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Exercise
• Write a C program that makes change:

prompts the user for an amount of money

reports the number of pennies, nickels, dimes, quarters, and dollars

• Example:

Amount of money? 17.93
Pennies :   2
Nickels :   1
Dimes   :   1
Quarters:   3
Dollars :  17
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Exercise solution
#include <stdio.h>
int main(void) {

int pennies = 0, nickels = 0, dimes = 0, quarters = 0, dollars;
double money;
printf("Amount of money? ");
scanf("%lf", &money);
dollars = (int) money;
pennies = (int) (money * 100) % 100;
while (pennies >= 25) {

pennies -= 25;
quarters++;

}
while (pennies >= 10) {

pennies -= 10;
dimes++;

}
while (pennies >= 5) {

pennies -= 5;
nickels++;

}
printf("Pennies : %3d\n", pennies);
printf("Nickels : %3d\n", nickels);
printf("Dimes : %3d\n", dimes);
printf("Quarters: %3d\n", quarters);
printf("Dollars : %3d\n", dollars);
return 0;

}


