CSE 303
Lecture 8

Intro to C programming

read C Reference Manual
pp.Ch.1,2.2-2.4,26,3.1,5.1,7.1-7.2,75.1-7.5.4,7.6-7.9, Ch. 8;

Programming in C Ch. 1-6

slides created by Marty Stepp

\ http://www.cs.washington.edu/303/ J

Lecture summary

e History and characteristics of C

e major C language features
= differences between C and Java

e basic console input and output (printf and scanf)

e Our learning objectives in C:
= procedural programming
= deeper understanding of program compilation and execution
learn details of memory management
debugging skills
software development strategies

N ey
SECOND EDITION W)

History

C

to accompany the Unix operating system PROCROMING
= |atest version standard: "C99" (1999) BESMATCHE

e created in 1972 by Dennis Ritchie of Bell Labs

FRTNTE RARL S TR SN

e designed for creating system software
(programs close to the OS that talk directly to hardware)

= also designed to be hardware-independent (portable)
= Cis also used to develop high-level applications

e currently the 1st or 2nd most widely used language worldwide

e based on ALGOL; has influenced the designs of many languages
\ = C++, Java, C#, Perl, PHP, JavaScript, Objective-C, D, ...)

Characteristics of C

e fairly similar basic syntax and semantics to Java
= if/else, for,while, int, double, {} [] () ; +- */% ++

e much smaller provided standard library / APl than Java

e more low-level (more work for programmer, less for compiler)

e procedural (not object-oriented) @

= C (essentially) does not have objects as we know them
= verb(noun); ratherthan noun.verb();

e more unsafe (an incorrect program can cause more damage)

\ = C programs have more direct access to the system / hardware J

4

First C program

#include <stdio.h>

int main(void) {
printf("Hello, world!\n");
return 0;

¥

e Kernighan and Ritchie started the convention that the first program you
show in a new language should be one that prints "Hello, world!"

Dissecting Hello World

/

#include <stdio.h>

—

int main(void) {

\(mcludes printf functlon)j

like import in Java;
links the program to
the standard 1/0 library

-

the main function header;
you don't need to say public static
because these are the default in C

~

main returns an int error code to the OS

o

(0 on success, > 0 on failure)

J

printf("Hello, world!\n");

return ;;\\\\\\\\\\\\\“*~

}
_

-

~

like printlninJava
(actually more like
System.out.printf);
prints output to console

Second C program

/* Computes greatest common divisor (GCD) with Euclid's algorithm. */
#include <stdio.h>

int main(int argc, char** argv) {
int a, b, temp, r;

printf("Please enter two positive integers: ");

scanf("%d %d", &a, &b);

if (b > a) {

while ((r = a % b) !=0) {
a = b;
b =r;

printf("The GCD is %d.\n", b);
return 0;

Compiling/running

command description

gcc GNU C compiler

e to compile a program, type:
gcc -o target source.c

(where target is the name of the executable program to build)

= the compiler builds an actual executable file, not a .class like Java
= example: gcc -0 hi hello.c

e to run your program, just execute that file
= example: ./hi

_

gcc options (partial)

option description
-W level of warnings to display
(common usage: -Wall for all warnings)
-0 output executable file name
(if omitted, compiles to file a.out)
-g generates information for debugger tools

e most common usage for this course:
gcc -g -Wall -o target source.c

_

= the warnings from -Wall will protect us from unwise idioms

printf

function description

printf prints formatted output to console

printf("format string”", parameters);

e A format string contains placeholders to insert parameters into it:

%»dor%i aninteger

%1t a double ('long floating-point')
%S a string
%P a pointer (seen later)

int x = 3;
int y = 2;
printf("(%d, %d)\n", x, y); // (3, 2)

10

printf continued

e A placeholder can specify the parameter's width or precision:

_

%8d an integer, 8 characters wide, right-aligned

%-8d an integer, 8 characters wide, left-aligned

% .4f a real number, 4 digits after decimal

%6.2f a real number, 6 total characters wide, 2 after decimal
Examples:

int age = 45;
double gpa = 1.2345678;

printf("%8d %7.3f\n", age, gpa);
printf("%8.2f %.1f %10.5f", gpa, gpa, gpa);

Output:
45 1.234
1.23 1.2 1.23457

11

Same as Java

e general syntax for statements, control structures, function calls

e types int, double, char, long

= type-casting syntax

e expressions, operators, precedence

+ - */ % ++ --
—_*=/=%=

=

< <

e comments: /* ... */,

_

== l=> >= && || !

e scope (within set of { } braces)

//

(// not officially legal until C99)

12

Mostly the same as Java

e variables
= can be used without being initialized (!)
= must be declared at the start of a function or block (changed in C99)

e for loops
= variable cannot be declared in the loop header

e if/else statements, while and do/while loops
= thereis no boolean type (changed in C99)
= any type of value can be used as a test
= 0 means false, every other number means true

® parameters / returns

\ = C has certain features for values vs. references ("pointers")

13

Very different from Java

e Strings
= very clunky to use in C; essentially just arrays of characters
= are not objects; do not contain methods (external string functions)

e |/O to console and files
"= no Scanner; must use input functions such as scanf
= console |I/O different than file I/O

e errors and exceptions
= Chasno try/catch and does not represent errors as objects
= errors are usually returned as integer error codes from functions
= crashes are mostly called "segmentation faults" and are evil

_

14

Also very different

® arrays
= are just bare contiguous blocks of memory
= have no methods and do not know their own length (!)

e objects
= Cdoesn't have them
= closest similar feature: struct (a set of fields; no methods)

* memory management
= most memory that you consume, you must explicitly free afterward

e APl and provided libraries
= Cdoesn't have very many, compared to Java
= you must write many things yourself (even data structures)

_ _/

15

scanf

function

description

scanf reads formatted input from console

scanf("format string", variables) ;

= uses same syntax for formatted strings, placeholders as printf

doubles use %1f ('long float')

= must precede each variable with an & (address-of operator)

int x;
int y;

printf("Type your x and y values: ");

scanf("%d %d", &x, &y);

16

scanf continued

e scant returns the number of values successfully read
= can be examined to see whether the reading was successful

e if # of variables listed doesn't match # of format placeholders:
= too many variables: later ones ignored
= too few variables: program crashes!

e string can be complex to match a specific input pattern
int Xx;
int y;
printf("What is your (x, y) point?\n");
scanf("My point is (%d, %d)", &x, &y);

_ _/

17

Exercise

e Write a C program that makes change:
= prompts the user for an amount of money
= reports the number of pennies, nickels, dimes, quarters, and dollars

e Example:

Amount of money? 17.93

Pennies
Nickels
Dimes
Quarters:
Dollars

2
1
1
3
17

18

Exercise solution

#include <stdio.h>
int main(void) {

int pennies = 0, nickels = 0, dimes
double money;

printf("Amount of money? ");
scanf("%1f", &money);

dollars (int) money;

pennies = (int) (money * 100) % 100;
while (pennies >= 25) {

pennies -= 25;
quarters++;

while (pennies >= 10) {
pennies -= 10;
dimes++;

while (pennies >= 5) {
pennies -= 5;
nickels++;

}

printf("Pennies : %3d\n", pennies);
printf("Nickels : %3d\n", nickels);
printf("Dimes : %3d\n", dimes);
printf("Quarters: %3d\n", quarters);
printf("Dollars : %3d\n", dollars);
return 0;

= 0, quarters

= 0, dollars;

19

