
1

CSE 303
Lecture 8

Intro to C programming

read C Reference Manual
pp. Ch. 1, 2.2 - 2.4, 2.6, 3.1, 5.1, 7.1 - 7.2, 7.5.1 - 7.5.4, 7.6 - 7.9, Ch. 8;

Programming in C Ch. 1-6

slides created by Marty Stepp

http://www.cs.washington.edu/303/

2

Lecture summary
• History and characteristics of C

• major C language features
differences between C and Java

• basic console input and output (printf and scanf)

• Our learning objectives in C:
procedural programming
deeper understanding of program compilation and execution
learn details of memory management
debugging skills
software development strategies

3

History
• created in 1972 by Dennis Ritchie of Bell Labs

to accompany the Unix operating system
latest version standard: "C99" (1999)

• designed for creating system software
(programs close to the OS that talk directly to hardware)

also designed to be hardware-independent (portable)

C is also used to develop high-level applications

• currently the 1st or 2nd most widely used language worldwide

• based on ALGOL; has influenced the designs of many languages
C++, Java, C#, Perl, PHP, JavaScript, Objective-C, D, ...

4

Characteristics of C
• fairly similar basic syntax and semantics to Java

if/else, for, while, int, double, {} [] () ; +- */% ++

• much smaller provided standard library / API than Java

• more low-level (more work for programmer, less for compiler)

• procedural (not object-oriented)
C (essentially) does not have objects as we know them

verb(noun); rather than noun.verb();

• more unsafe (an incorrect program can cause more damage)
C programs have more direct access to the system / hardware

5

First C program

#include <stdio.h>

int main(void) {
printf("Hello, world!\n");
return 0;

}

• Kernighan and Ritchie started the convention that the first program you
show in a new language should be one that prints "Hello, world!"

6

Dissecting Hello World

#include <stdio.h>

int main(void) {

printf("Hello, world!\n");

return 0;

}

like import in Java;
links the program to

the standard I/O library
(includes printf function)

the main function header;
you don't need to say public static

because these are the default in C

main returns an int error code to the OS
(0 on success, > 0 on failure)

like println in Java
(actually more like

System.out.printf);
prints output to console

7

Second C program
/* Computes greatest common divisor (GCD) with Euclid's algorithm. */
#include <stdio.h>

int main(int argc, char** argv) {
int a, b, temp, r;

printf("Please enter two positive integers: ");
scanf("%d %d", &a, &b);

if (b > a) {
temp = a;
a = b;
b = temp;

}

while ((r = a % b) != 0) {
a = b;
b = r;

}

printf("The GCD is %d.\n", b);
return 0;

}

8

Compiling/running

• to compile a program, type:
gcc -o target source.c

(where target is the name of the executable program to build)

the compiler builds an actual executable file, not a .class like Java

example: gcc -o hi hello.c

• to run your program, just execute that file
example: ./hi

GNU C compilergcc

descriptioncommand

9

gcc options (partial)

• most common usage for this course:
gcc -g -Wall -o target source.c

the warnings from -Wall will protect us from unwise idioms

generates information for debugger tools-g

output executable file name
(if omitted, compiles to file a.out)

-o

level of warnings to display
(common usage: -Wall for all warnings)

-W

descriptionoption

10

printf

printf("format string", parameters);

• A format string contains placeholders to insert parameters into it:
%d or %i an integer
%lf a double ('long floating-point')
%s a string
%p a pointer (seen later)

int x = 3;
int y = 2;
printf("(%d, %d)\n", x, y); // (3, 2)

prints formatted output to consoleprintf

descriptionfunction

11

printf continued
• A placeholder can specify the parameter's width or precision:

%8d an integer, 8 characters wide, right-aligned
%-8d an integer, 8 characters wide, left-aligned
%.4f a real number, 4 digits after decimal
%6.2f a real number, 6 total characters wide, 2 after decimal

Examples:
int age = 45;
double gpa = 1.2345678;

printf("%8d %7.3f\n", age, gpa);
printf("%8.2f %.1f %10.5f", gpa, gpa, gpa);

Output:
45 1.234

1.23 1.2 1.23457

12

Same as Java
• general syntax for statements, control structures, function calls

• types int, double, char, long
type-casting syntax

• expressions, operators, precedence
+ - * / % ++ --
= += -= *= /= %=
< <= == != > >= && || !

• scope (within set of { } braces)

• comments: /* ... */, // (// not officially legal until C99)

13

Mostly the same as Java
• variables

can be used without being initialized (!)

must be declared at the start of a function or block (changed in C99)

• for loops
variable cannot be declared in the loop header

• if/else statements, while and do/while loops
there is no boolean type (changed in C99)

any type of value can be used as a test

0 means false, every other number means true

• parameters / returns
C has certain features for values vs. references ("pointers")

14

Very different from Java
• Strings

very clunky to use in C; essentially just arrays of characters

are not objects; do not contain methods (external string functions)

• I/O to console and files
no Scanner; must use input functions such as scanf
console I/O different than file I/O

• errors and exceptions
C has no try/catch and does not represent errors as objects

errors are usually returned as integer error codes from functions

crashes are mostly called "segmentation faults" and are evil

15

Also very different
• arrays

are just bare contiguous blocks of memory
have no methods and do not know their own length (!)

• objects
C doesn't have them
closest similar feature: struct (a set of fields; no methods)

• memory management
most memory that you consume, you must explicitly free afterward

• API and provided libraries
C doesn't have very many, compared to Java
you must write many things yourself (even data structures)

16

scanf

scanf("format string", variables);

uses same syntax for formatted strings, placeholders as printf
•doubles use %lf ('long float')

must precede each variable with an & (address-of operator)

int x;
int y;
printf("Type your x and y values: ");
scanf("%d %d", &x, &y);

reads formatted input from consolescanf

descriptionfunction

17

scanf continued
• scanf returns the number of values successfully read

can be examined to see whether the reading was successful

• if # of variables listed doesn't match # of format placeholders:
too many variables: later ones ignored

too few variables: program crashes!

• string can be complex to match a specific input pattern
int x;
int y;
printf("What is your (x, y) point?\n");
scanf("My point is (%d, %d)", &x, &y);

18

Exercise
• Write a C program that makes change:

prompts the user for an amount of money

reports the number of pennies, nickels, dimes, quarters, and dollars

• Example:

Amount of money? 17.93
Pennies : 2
Nickels : 1
Dimes : 1
Quarters: 3
Dollars : 17

19

Exercise solution
#include <stdio.h>
int main(void) {

int pennies = 0, nickels = 0, dimes = 0, quarters = 0, dollars;
double money;
printf("Amount of money? ");
scanf("%lf", &money);
dollars = (int) money;
pennies = (int) (money * 100) % 100;
while (pennies >= 25) {

pennies -= 25;
quarters++;

}
while (pennies >= 10) {

pennies -= 10;
dimes++;

}
while (pennies >= 5) {

pennies -= 5;
nickels++;

}
printf("Pennies : %3d\n", pennies);
printf("Nickels : %3d\n", nickels);
printf("Dimes : %3d\n", dimes);
printf("Quarters: %3d\n", quarters);
printf("Dollars : %3d\n", dollars);
return 0;

}

