
1

CSE 303
Lecture 6

more Unix commands;

bash scripting continued

read Linux Pocket Guide pp. 66-68, 82-88, 166-178

slides created by Marty Stepp

http://www.cs.washington.edu/303/

2

Remote connections

• sftp servername
once connected, can use cd, ls, PUT filename, GET filename

• scp filename(s) user@server:/path/file
Examples:

scp * stepp@attu:/homes/iws/stepp/hw1
scp stepp@attu:/homes/iws/stepp/* .

open a shell on a remote serverssh

open a connection to transfer files to/from a serversftp

copy files to/from a server, then disconnectscp

descriptioncommand

3

Remote editing
• Gnome's file browser and gedit text editor are capable of opening

files on a remote server and editing them from your computer
press Ctrl-L to type in a network location to open

4

Remote X display
• normally, you cannot run graphical programs on a remote server

• however, if you connect your SSH with the -Y parameter, you can!
the X-Windows protocol is capable of displaying programs remotely

ssh -Y attu.cs.washington.edu

5

Compressed files

• many Linux programs are distributed as .tar.gz archives
first, multiple files are grouped into a .tar file (not compressed)

next, the .tar is compressed via gzip into a .tar.gz or .tgz

• to decompress a .tar.gz archive:
$ tar -xzf filename.tar.gz

slower, optimized compression program (single-file)bzip2

create or extract .zip compressed archiveszip, unzip

create or extract .tar archives (combine multiple files)tar

GNU free compression programs (single-file)gzip, gunzip

descriptioncommand

6

Comparing files

• Example:

$ diff file1.txt file2.txt
1c1
< Hello!

> Hi!
5d4
< Thanks!
7a7
> So long.

outputs differences between two text filesdiff

descriptioncommand

Hi!
How are you?
I am just fine.

Well, goodbye.
So long.

Hello!
How are you?
I am just fine.
Thanks!

Well, goodbye.

file2.txtfile1.txt

7

Searching for files

find path -name pattern

• Examples:

$ find . -name * (find all files)

$ find foo/ -name *.txt (find .txt files in foo/)

• Often used with xargs to apply an operation to each found file:

$ find . -name *.sh | xargs chmod +x
(make all .sh scripts executable)

searches for files in a given directory tree
(recursively processes subdirectories)

find

descriptioncommand

8

Searching in files

• Character-set patterns:
[abcd] - lines that have an a, b, c, or d

[abcd]efg - lines that have an (a, b, c, or d) followed by efg

[abcd]* - lines that contain strings of as, bs, cs, and/or ds

• Example:

$ grep "CSE 14[23]" homework/*

searches for patterns of text within a filegrep

descriptioncommand

9

More Shell Scripting

10

if/else
if [test]; then # basic if

commands
fi

if [test]; then # if / else if / else
commands1

elif [test]; then
commands2

else
commands3

fi

there MUST be a space between if and [and between [and test
•[is actually a shell command, not just a character

• also be careful to include the comma between] and then

11

Testing commands

if [$USER = "stepp"]; then
echo "Hello there, beautiful!"

fi

LOGINS=`w | wc -l`
if [$LOGINS -gt 10]; then

echo "attu is very busy right now!"
fi

tests whether a file exists and is read/writable-r, -w

compares numbers; equivalent to Java's

<, <=, ==, >, >=, !=
-lt, -le, -eq,

-gt, -ge, -ne

tests whether a string is or is not empty (null)-n, -z

tests whether a given file or directory exists-e, -d

compares two string variables=, !=, <, >

descriptionshell command

12

More if testing

alert user if running >= 10 processes when
attu is busy (>= 5 users logged in)
LOGINS=`w | wc -l`
PROCESSES=`ps -u $USER | wc -l`
if [$LOGINS -gt 5 -a $PROCESSES -gt 10]; then

echo "Quit hogging the server!"
fi

orif [expr1 -o expr2]; then ...

andif [expr1 -a expr2]; then ...

notif [! expr]; then ...

descriptionshell command

13

Command-line arguments

if ["$1" = "-r"]; then
echo "Running in special reverse format."

fi

if [$# -lt 2]; then
echo "Usage: $0 source destination"
exit 1 # exit the script, error code 1

fi

command-line arguments$1, $2, $3, ...

array of all arguments$@

name of this script$0

number of arguments$#

descriptionvariable

14

Exercise
• Write a program that computes the user's body mass index (BMI) to

the nearest integer, as well as the user's weight class:

$./bmi
Usage: ./bmi weight height

$./bmi 112 72
Your Body Mass Index (BMI) is 15
Here is a sandwich; please eat.

$./bmi 208 67
Your Body Mass Index (BMI) is 32
There is more of you to love.

obese≥ 30

overweight25 - 29

normal18 - 24

underweight≤ 18

Weight classBMI
7032 ×=

height
weightBMI

15

Exercise solution
#!/bin/bash
Body Mass Index (BMI) calculator
if [$# -lt 2]; then

echo "Usage: $0 weight height"
exit 1

fi

let BMI="703 * $1 / $2 / $2"
echo "Your Body Mass Index (BMI) is $BMI"
if [$BMI -le 18]; then

echo "Here is a sandwich; please eat."
elif [$BMI -le 24]; then

echo "You're in normal weight range."
elif [$BMI -le 29]; then

echo "You could stand to lose a few."
else

echo "There is more of you to love."
fi

16

Common errors
• [: -eq: unary operator expected

you used an undefined variable in an if test

• [: too many arguments
you tried to use a variable with a large, complex value (such as multi-
line output from a program) as though it were a simple int or string

• let: syntax error: operand expected (error token is " ")

you used an undefined variable in a let mathematical expression

17

for and while loops
for name in value1 value2 ... valueN; do

commands
done

• the pattern after in can be:
a hard-coded set of values you write in the script
a set of file names produced as output from some command
command line arguments: $@

while [test]; do # not used as often
commands

done

18

Exercise
• Write a script createhw.sh that creates directories named hw1,

hw2, ... up to a maximum passed as a command-line argument.

$./createhw.sh 8

Copy criteria.txt into each assignment i as criteria(2*i).txt

Copy script.sh into each, and run it.
• output: Script running on hw3 with criteria6.txt ...

If any directory already exists, skip it and print a message such as:
You already have a hw3 directory!

The following
command may be
helpful: outputs a sequence of numbersseq

descriptioncommand

19

Exercise solution
#!/bin/bash
Creates directories for a given number of assignments.
if [$# -lt 1]; then

echo "Usage: $0 MAX"
exit 1

fi

for num in `seq $1`; do
if [-d "hw$num"]; then

echo "You already have a hw$num directory!"
else

let CNUM="2 * $num"
mkdir "hw$num"
cp script.sh "hw$num/"
cp criteria.txt "hw$num/criteria$CNUM.txt"
echo "Created hw$num."
cd "hw$num/"
bash ./script.sh
cd ..

fi
done

20

Arrays
name=(element1 element2 ... elementN)

name[index]=value # set an element

$name # get first element

${name[index]} # get an element

${name[*]} # elements sep.by spaces

${#name[*]} # array's length

arrays don't have a fixed length; they can grow as necessary

if you go out of bounds, shell will silently give you an empty string

• you don't need to use arrays in assignments in this course

21

Functions
function name() { # declaration

commands
}

name # call

functions are called simply by writing their name (no parens)

parameters can be passed and accessed as $1, $2, etc. (icky)

• you don't need to use functions in assignments in this course

