
1

CSE 303
Lecture 5

bash continued:

users/groups; permissions; intro to scripting

read Linux Pocket Guide pp. 166-178

slides created by Marty Stepp

http://www.cs.washington.edu/303/

2

Lecture summary

• basic script syntax and running scripts

• shell variables and types

• control statements: if/else, loops

3

Shell scripts

• script: A short program whose purpose is to run other programs.

� a series of commands combined into one executable file

• shell script: A script that is executed by a command-line shell.

� bash (like most shells) has syntax for writing script programs

� if your script becomes > ~100-150 lines, switch to a real language

• To write a bash script (in brief):

� type one or more commands into a file; save it

� type a special header in the file to identify it as a script (next slide)

� enable execute permission on the file

� run it!

4

Basic script syntax

#!interpreter

� written as the first line of an executable script; causes a file to be

treated as a script to be run by the given interpreter

• (we will use /bin/bash as our interpreter)

• Example: A script that removes some files and then lists all files:

#!/bin/bash

rm output*.txt

ls -l

5

Running a shell script

• by making it executable (most common; recommended):

chmod u+x myscript.sh

./myscript.sh

• by launching a new shell:

bash myscript.sh

• by running it within the current shell:

source myscript.sh

� advantage: any variables defined by the script remain in this shell

(seen later)

6

echo

• Example: A script that prints the time and your home directory.

#!/bin/bash
echo "This is my amazing script!"
echo "Your home dir is: `pwd`"

• Exercise : Make it so that whenever I log in to attu, it:

� clears the screen

� displays the date/time: The time is: 04/06 10:40
� shows me an ASCII cow welcoming my user name

produces its parameter(s) as output

(the println of shell scripting)

echo

descriptioncommand

7

Script example
#!/bin/bash
clear
echo "Today's date is `date`, this is week `date "+%V"`."
echo

echo "These users are currently connected:"
w | grep -v USER | sort
echo

echo "This is `uname -s` on a `uname -m` processor."
echo

echo "This is the uptime information:"
uptime
echo
echo "That's all folks!"

8

Comments
comment text

� bash has only single-line comments; there is no /* ... */ equivalent

• Example:

#!/bin/bash
Leonard's first script ever
by Leonard Linux
echo "This is my amazing script!"
echo "The time is: `date`"

This is the part where I print my home directory
echo "Home dir is: `pwd`"

9

.bash_profile

• when you log in to bash, it runs the script ~/.bash_profile

� you can put common startup commands into this file

� useful for setting aliases and other defaults

� ("non-login" shells use .bashrc instead of .bash_profile)

• Exercise : Make it so that whenever you try to delete or overwrite a

file during a move/copy, you will be prompted for confirmation first.

• Exercise : Make it so that when we create new files, we (the owner)

will be the only user that can read or write them.

10

Shell variables

• name=value (declaration)

� must be written EXACTLY as shown; no spaces allowed

� often given all-uppercase names by convention

AGE=14
NAME="Marty Stepp"

• $name (usage)

echo "$NAME is $AGE"
Marty Stepp is 14

11

Common errors

• if you misspell a variable's name, a new variable is created

NAME=Marty
...
Name=Daniel # oops; meant to change NAME

• if you use an undeclared variable, an empty value is used

echo "Welcome, $name" # Welcome,

• when storing a multi-word string, must use quotes

NAME=Marty Stepp # $NAME is Marty
NAME="Marty Stepp" # $NAME is Marty Stepp

12

Capture command output

variable=`command`

� captures the output of command into the given variable

• Example:

FILE=`ls -1 *.txt | sort | tail -c 1`
echo "Your last text file is: $FILE"

13

Types and integers

• most variables are stored as strings

� operations on variables are done as string operations, not numeric

• to instead treat a variable as an integer:

x=42
y=15
let z="$x + $y" # 57

• integer operators: + - * / %

� bc command can do more complex expressions

• if a non-numeric variable is used in numeric context, you'll get 0

14

Bash vs. Java

x=3

� x vs. $x vs. "$x" vs. '$x'

s2=25
s3=42
s4=$s2$s3
let n="$s2 + $s3"

String s2 = "25";
String s3 = "42";
String s4 = s2 + s3; // "2542"
int n = Integer.parseInt(s2)

+ Integer.parseInt(s3); // 67

s=helloString s = "hello";

s=${s}ss = s + "s"; // "hellos"

echo sSystem.out.println("s");

echo $sSystem.out.println(s);

BashJava

15

Special variables

� these are automatically defined for you in every bash session

• Exercise : Change your attu prompt to look like Ubuntu's:

jimmy@mylaptop:/usr/bin$

where to display graphical X-windows output$DISPLAY

list of directories holding commands to execute$PATH

full path to your shell program$SHELL

name of computer you are using$HOSTNAME

your user name$USER

your current directory$PWD

the shell's command prompt string$PS1

your home directory$HOME

descriptionvariable

16

set, unset, and export

� typing set or export with no parameters lists all variables

sets a variable to be read-only

(so that programs launched by this shell cannot

change its value)

readonly

sets the value of a variable

(not usually needed; can just use x=3 syntax)

set

deletes a variable and its valueunset

sets a variable and makes it visible to any

programs launched by this shell

export

descriptionshell command

17

Console I/O

� variables read from console are stored as strings

• Example:

#!/bin/bash

read -p "What is your name? " name

read -p "How old are you? " age

printf "%10s is %4s years old" $name $age

reads value from console and stores it into a variableread

prints output to consoleecho

prints complex formatted output to consoleprintf

descriptionshell command

18

if/else
if [test]; then # basic if

commands

fi

if [test]; then # if / else if / else
commands1

elif [test]; then
commands2

else
commands3

fi

� there MUST be a space between if and [and between [and test

•[is actually a shell command, not just a character

19

Testing commands

if [$USER = "stepp"]; then
echo "Hello there, beautiful!"

fi

LOGINS=`w | wc -l`
if [$LOGINS -gt 10]; then

echo "attu is very busy right now!"
fi

tests whether a file exists and is read/writable-r, -w

compares numbers; equivalent to Java's

<, <=, ==, >, >=, !=

-lt, -le, -eq,

-gt, -ge, -ne

tests whether a string is or is not empty (null)-n, -z

tests whether a given file or directory exists-e, -d

compares two string variables=, !=, <, >

descriptionshell command

20

More if testing

alert user if running >= 10 processes when
attu is busy (>= 5 users logged in)
LOGINS=`w | wc -l`
PROCESSES=`ps -u $USER | wc -l`
if [$LOGINS -gt 5 -a $PROCESSES -gt 10]; then

echo "Quit hogging the server!"
fi

orif [expr1 -o expr2]; then ...

andif [expr1 -a expr2]; then ...

notif [! expr]; then ...

descriptionshell command

21

Command-line arguments

if ["$1" = "-r"]; then
echo "Running in special reverse format."

fi

if [$# -lt 2]; then
echo "Usage: $0 source destination"
exit 1 # exit the script, error code 1

fi

command-line arguments$1, $2, $3, ...

array of all arguments$@

name of this script$0

number of arguments$#

descriptionvariable

22

Exercise

• Write a program that computes the user's body mass index (BMI) to

the nearest integer, as well as the user's weight class:

$./bmi
Usage: ./bmi weight height

$./bmi 112 72
Your Body Mass Index (BMI) is 15
Here is a sandwich; please eat.

$./bmi 208 67
Your Body Mass Index (BMI) is 32
There is more of you to love.

obese≥ 30

overweight25 - 29

normal18 - 24

underweight≤ 18

Weight classBMI

703
2

×=
height

weight
BMI

23

Exercise solution
#!/bin/bash
Body Mass Index (BMI) calculator
if [$# -lt 2]; then

echo "Usage: $0 weight height"
exit 1

fi

let BMI="703 * $1 / $2 / $2"
echo "Your Body Mass Index (BMI) is $BMI"
if [$BMI -le 18]; then

echo "Here is a sandwich; please eat."
elif [$BMI -le 24]; then

echo "You're in normal weight range."
elif [$BMI -le 29]; then

echo "You could stand to lose a few."
else

echo "There is more of you to love."
fi

