Name:

CSE 303, Autumn 2006, Final Examination
12 December 2006

Please do not turn the page until everyone is ready.

Rules:

The exam is closed-book, closed-note, except for one two-sided 8.5"x11" piece of paper.
Please stop promptly at 4:20.

You can rip apart the pages, but please write your name on each page.

There are 79 points total, distributed unevenly among 6 questions (many of which have
multiple parts).

o When writing code, style matters, but don’t worry about indentation.

Question Max Grade
1 11
2 16
3 10
4 13
5 9
6 20
Total 79

Advice:
o Read questions carefully. Understand a question before you start writing.
e Write down thoughts and intermediate steps so you can get partial credit.
e The questions are not necessarily in order of difficulty. Skip around.
o If you have questions, ask.
e Relax. You are here to learn.

Name

1. (11 Points) Consider the following three header/source files:

struct Bar {
int baz;
int quux;

&

#include "bar._h"
int foo(struct Bar *bar);

#include <stdlib.h>
#include "foo.h"
#include "bar.h"

int main(int argc, char**argv) {
struct Bar b = {atoi(argv[1l]), atoi(argv[2]};
return foo(&b);

¥
int foo(struct Bar *bar) {

return (bar->baz == bar->quux) ? 1 : O;
}

(@) (2 pts) What error will you get when you compile with gcc —Wall —o foo foo.c?

(b) (2 pts) How can you change foo . h so that compilation will succeed? Be specific.

Name:

Problem 1, continued

(c) (2 pts) How can you change bar . h so that compilation will succeed? Be specific.

(d) (2 pts) Is it best to fix this problem by changing foo.h, bar.h, or both? Why?

(e) (3 pts) What will happen when you run this program in the following ways? Give the
code that is returned and/or describe any errors that occur.

e _/foo 1l 1

e _/foo 1 One

e _/foo 1

Name:

Name

2. (16 Points) Consider the following Class definitions. (Feel free to rip out this page.)
class A {

char *str;

public:

A(char *s) : str(s) {}

~AQ {3

char *getStr() { return str; }
};
class B {

char *str;

public:
B(char *s) {
str = (char *)malloc(strlen(s) + 1);
strcpy(str,s);
}

~B() { free(str); }

char *getStr() {
char *newStr = (char *)malloc(strlen(str) + 1);
strcpy(newStr,str);
return newStr;

}
j

Name:

Name:

Problem 2, continued

(@) (2 pts) These two classes have the same data members and the same interface. Why
is class B more robust?

(b) (2 pts) What information should be included in a minimum specification for
B::B(char *s)?

() (2 pts) What information should be included in a minimum specification for
B::getStr()?

(d) (2 pts) Write a line of code that you could add to the top of B: :B(char *s) to
make it more robust.

Name

Problem 2, continued

For each of the following code sequences, say what compile time or run time problems it
causes, if any.

(e) (2pts)

void
A
B
b

}

(f) (2pts)

void 20 {
A *a = (A®)new B(''B");
delete a;

}

(9) (2pts)

void 30 {
A *a = dynamic_cast<A*>(new B("'B"));
delete a;

}

(h) (2 pts)

void 40 {
B bi(*'B1™), b2(*'B2');
b2 = bil;

3

Name:

Continue to the next page

Name

3. (10 Points) Consider the following code:
#include <iostream>

using namespace std;

class C1 {
int _il;
public:

Ci(int 11) : _11(i1) {3

virtual void PrintA(ostream &out) {
out << 1l << endl;

}

void PrintB(ostream &out) {
out << _il << endl;

}

}:

class C2 : public C1 {
int _i2;

public:

c2¢int 11, int 12) : C1(il), _i2(i2) {}

void PrintA(ostream &out) {
out << _i2 << endl;

}

virtual void PrintB(ostream &out) {
out << 12 << endl;

}

}:

class C3 : public C2 {
int _i3;

public:

C3(int i1, int 12, int 13) - C2(i1l1,i12), _i3(i3) {}

void PrintA(ostream &out) {
out << i3 << endl;
}
void PrintB(ostream &out) {
out << _i3 << endl;
}
};

10

Name

Problem 4 (continued)

For each commented line below, indicate what is printed on cout.

int main() {
Cl cl1(1);
C2 c2(1,2);
C3 c3(1,2,3);

Cl *pl = &cl;
Cl *p2 = dynamic_cast<Cl*>(&c2);
Cl *p3 = dynamic_cast<Cl*>(&c3);

pl->PrintA(cout); // Output is
pl->PrintB(cout); // Output 1is
p2->PrintA(cout); // Output 1is
p2->PrintB(cout); // Output is
p3->PrintA(cout); // Output is
p3->PrintB(cout); // Output is

Cl c1_2
Cl c1_3

c2;
c3;

cl 2_PrintA(cout); // Output is
cl 2_PrintB(cout); // Output 1s
cl 3.PrintA(cout); // Output is

cl 3.PrintB(cout); // Output is

11

Name

4. (13 Points) The following is a list of files and the include statements found in each:

—— Pilot.h - —————
#include <iostream>

-- Pilot.cpp ——--——————m
#include "Pilot.h"

--Viper.h ------»--o» oo o i i (i (i il i i i i i -
#include <iostream>

-- Viper.cpp - —————————————
#include <cassert>

#include "Viper.h"

#include ""Battlestar.h"

#include "Pilot.h"

-- Battlestar.h ---————---—--———
#include <iostream>

#include <string>

#include <vector>

-- Battlestar.cpp - - -——-—————————————————————
#include <cassert>

#include ""Battlestar.h"

#include "Viper.h"

-= main.cpp ----———————m e
#include <iostream>
#include <iostream>

#include ""Battlestar.h"
#include "Viper.h"

Suppose we also have a MakeTi e that begins with the following lines.
-- Makefile ----———— -

GXX = g++
CFLAGS = -Wall —g

12

Name:

Instead of using static libraries, we want this Makefi e to compile main.cpp,
Battlestar.cpp, Viper.cpp, and Pilot.cpp and link them to create a program
called bsgsim. Indicate whether or not the following lines of the Makefile are correct. If
they are incorrect, write the corrected version.

(a) (3pts)]
Battlestar.o: Battlestar.cpp Battlestar.h Viper.h
g++ -Wall -g -c -0 $@ $<

(b) (3pts)]
Pilot.cpp: Pilot.h
g++ -Wall -g -c —o Pilot.o $<

() (3pts)]
bsgsim: main.o Viper.o Battlestar.o
$(GXX) $(CFLAGS) -0 3$@ $<

For each statement below, indicate whether it is true or false.

(d) (2 pt) In order for the whole project to compile when we type “make”, the line that
builds “bsgsim” should go at the bottom of the Makefi le.
True False

(&) (1 pt) In order to run bsgsim in gdb, we would have to add a special flag to each
Makefi le command above.
True False

() (2 pt) In order to profile bsgsim with gprof, we would have to add a special flag
to each Makefi e command above.
True False

(9) (1 pt) Suppose Battlestar.o, Viper.o,and Pilot.o were each placed in
static libraries (1 1bB.a, IibV.a, and 11bP.a). If we link them to bsgsim with
the flags -IP -1B —1V -1IB -1V, (in that order) we are guaranteed success.

True False

13

Name:

5.

(9 Points) The project in the previous problem has been imported into a Subversion
repository. Bob and Kate both have working copies of this project. All files in the
repository and in both of their working copies are at revision 1. Both Bob and Kate begin
to edit the file Pi ot . cpp. After each command executed by Bob or Kate below,
indicate the revision of Pilot. cpp that appears in the repository, Bob’s working copy,
and Kate’s working copy. If the revision has no number, write the letter “e” (for “edited”)
in the blank. You may assume that no other commands are executed.

Repository Bob’s Kate’s
(@) (2 pts) Bob makes edits and executes this command:
svn commit Pilot.cpp -m "Bob"

(b) (2 pts) Kate makes edits and executes this command:
svn revert Pilot.cpp

(c) (2 pts) Kate makes edits and executes this command:
svn commit Pilot.cpp -m "Kate"

(d) (2 pts) Kate executes this command:
svn update Pilot.cpp

(e) (1 pt) Assuming Kate makes no edits to other files in the project, what is the revision
of these other files after the above commands are executed?

14

Name

6. (20 Points) Consider the following code snippets contained in the files indicated. (Feel
free to rip out this page.)

class Viper {
Battlestar *base;
int id;
public:
Viper(int i1, Battlestar *b=NULL);
void Land(Battlestar &b);
void Launch();
const Battlestar * GetBattlestar() const;

}:
-- Battlestar.h ----————-————-———

class Battlestar {
string name;
vector<Viper*> inside;

public:
Battlestar(string n, int nVipers=10);
Viper *GrantLaunchClearance(Viper *v);
void GrantLandingClearance(Viper *v);
bool Viperlnside(Viper *v) const;
const string &GetName() const;

}:
-- Battlestar.cpp ----———————————————————

// Lands the Viper v on this Battlestar.

// Precondition: v Cannot be in this Battlestar’s list

// Precondition: v’s Battlestar must be NULL

void Battlestar::GrantLandingClearance(Viper *v) {
assert(Viperlinside(v) && v->GetBattlestar() == NULL);
v->Land(*this);
inside.push_back(v);

}

// Returns true if the Viper is inside this Battlestar.
// Otherwise, returns false.
bool Battlestar::Viperinside(Viper *v) {
for (unsigned int 1=0; i<inside.size(); i++) {
it (inside[i] == v)
return true;

}

return false;

}

15

Name:

Continue to the next page.

16

Name:

Problem 6, continued:

(a) (6 pts) Given the code above and the code sequence below, indicate whether or not
the commented lines below would produce errors when compiled. You may assume
that all the necessary headers have been included. (Indicate your choice by writing
“Yes” or “No” after each “// Error?” comment.)

Viper vl = 1; // Error?
Viper v2(2);

Battlestar g(“'Galactica™);

Battlestar *bl = vl.GetBattlestar(); // Error?
const Battlestar *b2 = vl.GetBattlestar(); // Error?
cout << vl._GetBattlestar()->GetName(); // Error?
vl._.GetBattlestar()->GrantLaunchClearance(&vl);//Error?

v2.Land(*b2); // Error?

(b) (3 pts) Which of the following make good “black box” tests for the method
Battlestar: :GrantLandingClearance? Circle all that apply.

1. A code sequence that checks the effects of the method against the specification.
2. A code sequence that exercises every function call inside the method.

3. A code sequence that violates the method’s preconditions.

17

Name:

(©)

(5 pts) Suppose that you compile and run the project bsgs im with no arguments,
after which you discover that Battlestar: :GrantLandingClearance is
failing an assertion. How would you use gdb to determine which precondition was
violated and which caller violated it? You must give either specific commands or
clear descriptions of each step.

(d) (3 pts) After getting bsgsim to work, you start to think that it is running too slowly.

(€)

You start to profile it using gprotf. You suspect that the method

Battlestar: :ViperlInside is too slow and that you need to implement a
faster algorithm. You profile it, check the flat profile, and notice that this method is
called 100 times more than any other. Does this give you a clear sense of whether or
not you should rewrite this method? Explain your answer.

(3 pts) Continuing your investigation of Battlestar: :ViperiInside, you
notice that whenever you run the program, about 80% of the time is spent in this
method, and it is called only from Battlestar: :GrantLandingClearance.
Does this give you a clear sense of whether or not you should rewrite the method?
Explain your answer.

18

