
CSE 490c – Autumn 2004
Midterm 1

Please do not read beyond this cover page until told to start.

Name: __

There are 10 questions. Questions are worth varying numbers of points. The number of
points roughly reflects an estimate of the time required to answer and double-check your
answer.

TOTAL: __________________ / 50

1. [4 points]

Explain briefly what happens when each of the following commands is typed to the
shell.
(a) echo *

 The names of the files in the current directory (that do not begin with ‘.’) are
printed.

(b) echo ~

 The full path name of the user’s home directory is printed.

2. [4 points]
Shell commands like echo, ls, cat, and many others are simply programs; that is, there
is no code in the implementation of the shell that knows anything about them
specifically. On the other hand, the command export is part of the shell
implementation, and not a separate program. (Here is an example use of export:
export CEBWIN=”white;600;800”.)

(a) Give a brief argument about why it’s a good thing that echo, ls, and the others are
not part of the shell implementation.

 It simplifies the implementation of the shell and makes it easier to add entirely new

“commands” or to modify existing ones.

(b) Why, then, is export part of the shell implementation?

 export operates on environment variables. Each process has its own set of
environment variables (initialized originally with values inherited from its parent). If
export were a normal command, it would execute in a process distinct from the shell,
and any manipulation of environment variables it performed would apply to its own
set, not that of the shell. That would be useless – any changes would be lost when
export terminated.

3. [3 points]
Here is some output from a session on attu:
 [attu1] ~> ls
 -bash: ls: No such file or directory

Give a plausible explanation of what the problem might be. (“There is no ls
executable on attu.” is among the implausible answers.)

 $PATH doesn’t include the directory where the ls executable can be found.

4. [3 points]
Why does the world need sed? (That is, what does it do that most editors do not do?)

 sed is a stream editor – the input to be edited comes from stdin and the result goes
to stdout. That makes it useful in scripts, as it can be easily combined with other
programs using pipes without requiring any temporary files to be created (as you
would need with most other editors).

5. [4 points]

I want to create a file whose content is the list of full path name of all files whose
name begins src in the file system subtree rooted at /u5/zahorjan. How can I do that?
Be specific. At least some of your answer should be code (or command(s)) I can
execute to get the result.

 find /u5/zahorjan –name ‘src*’ –print >filenames

(The –print is optional, as printing is the default operation. Some kind of quoting
around src* is required – if you don’t have it the shell will do substitution before
handing the arguments to find. If there are no files with names beginning ‘src’ in the
current directory, the result of the expansion will be ‘src*’, and everything will be
fine. But if there are any files that match the pattern, their names will be substituted
for the pattern itself.

6. [6 points]
(a) In the source for the editor of HW3, what is the purpose of the following line:
 #include <ncurses.h>

 To include the declaration of the ncurses interface so that the compiler can do
type checking of your code. This lets it warn you of potential type problems while its
translating your C code into hardware instructions. (Note that it needs only the
interface declaration of the interface to do this, not the ncurses implementation.)

(b) What is purpose of –lncurses in gcc *.c –lncurses (again, for the HW3 code)?

 To inform the linker that it should look in the ncurses library (/usr/lib/libncurses.a)
as one place it might find the compiled (hardware instruction) version of methods
that have been called by your code but are not implemented by your code. This is
necessary because the ncurses library is not looked in by default (unlike the standard
library, /usr/lib/libc.a).

7. [4 points]
When typed to grep, the regular expression ab+.*c mean “any string that is an ‘a’
followed by 1 or more ‘b’s and then eventually followed by a ‘c’.
Draw an FSA that corresponds to that regular expression.

 Most people answered this in a somewhat non-grep way, giving an FSA that reached
an accepting state if the input string had a prefix that matched the regular expression.
Here’s a version of that, with the assumption that any input symbol not listed takes us
to an undrawn error state (where we stay).

 grep actually looks for any match of the pattern within the file, though. Here’s an
FSA that does that:

Sta
rt

Ac
cep

a b

Any symbol other
than ‘c’

c

8. [4 points]

Explain what the bug(s) is(are) in the following bit of C code:
 int myInt;
 char myStr[24];
 …
 scanf(“%d%s”, myInt, myStr);

 scanf() requires call-by-reference arguments, which in C means passing pointers
to arguments. Because ‘myStr’ is an array, it’s already a pointer. The argument
‘myInt’ should be ‘&myInt’, though.

9. [6 points]
Give the code for a C subroutine that takes two “C strings” as parameters and returns
0 if the strings are identical and 1 if they are not. (Do NOT use the string library for
this.)

int strcompare(char* str1, char* str2) {
 for (;;) {
 if (*str1 != *str2) return 1;
 if (*str1 == ‘\0’) return 0;
 str1++;
 str2++;
 }
}

Sta
rt

Ac
cep

a b

Any symbol other
than ‘a’ and ‘c’

c

aAny symbol other
than ‘a’

Any symbol
other than
‘a’ or ‘b’

10. [12 points]
The function below is intended to take two NxN matrices, A and B, as inputs. It
returns a NEW matrix, C, where c[i][j] = max(a[i][j], b[i][j]).
Complete the implementation.

float** matMax(int N, float** A, float** B) {

 float** C;
 int row;
 int col;

 C = (float**)malloc(sizeof(float*)* N);
 for (row=0; row<N; row++) {
 C[row] = (float*)malloc(sizeof(float) * N);
 for (col=0; col<N; col++) {
 C[row][col] = A[row][col] > B[row][col] ? A[row][col] : B[row][col];
 }
 }
 return C;

}

