If you think C++ is not overly complicated, just what is a
protected abstract virtual base pure virtual private
destructor and when was the last time you needed one?
— Tom Cargill

If C++ has taught me one thing, it’s this: Just because the
system is consistent doesn’'t mean it's not the work of
Satan. — Andrew Plotkin

David Notkin e Autumn 2009 ® CSE303 Lecture 26

The plan

11/30 C++ intro 12/2 C++intro 12/4 C++intro

12/7 12/9 12/11

Social Implications Final prep, evaluations
12/15
Final

CSE303Au09 2

Constructing objects

« client code creating stack-allocated object:
type name (parameters) ;
Point pl(4, -2);

« creating heap allocated (pointer to) object:
type* name = new type (parameters);
Point* p2 = new Point (5, 17);

+ in Java, all objects are allocated on the heap

» in Java, all variables of object types are references
(pointers)

A client program

#include <iostream>
#include "Point.h"

using namespace std;

int main() {

Point pl(1l, 2);
Point p2(4, 6);
cout << "pl is: (" << pl.getX() << ", "

<< pl.getY() << ")" << endl; // pl is: (1, 2)
cout << "p2 is: (" << p2.getX() << ", "

<< p2.get¥() << ")" << endl; // p2 is: (4, 6)
cout << "dist : " << pl.distance(p2) << endl;
return 0; // dist : 5

Client with pointers

#include <iostream>
#include "Point.h"
using namespace std;

int main() {
Point* pl = new Point(l, 2);
Point* p2 = new Point(4, 6);
cout << "pl is: (" << pl->getX() << ", "
<< pl->get¥() << ")" << endl; // pl is: (1, 2)
cout << "p2 is: (" << p2->getX() << ", "
<< p2->getY¥() << ")" << endl; // p2 is: (4, 6)

cout << "dist : " << pl->distance(*p2) << endl;
delete pl; // dist : 5
delete p2; // free

return 0;

Stack vs. heap objects

< which is better, stack or pointers?
— if it needs to live beyond function call (e.g. returning), use a
pointer
— if allocating a whole bunch of objects, use pointers
« "primitive semantics” can be used on objects
— stack objects behave use primitive value semantics (like ints)
« new and delete replace malloc and free
— new does all of the following:
« allocates memory for a new object
« calls the class's constructor, using the new object as this
« returns a pointer to the new object

— must call delete on any object you create with new, else it
leaks

12/4/2009

12/4/2009

Why doesn't this code change p1?

int main() {

}

Point pl(1, 2);

cout << pl.getX() << "," << pl.get¥() << endl;
example (pl) ;

cout << pl.getX() << "," << pl.get¥() << endl;
return 0;

void example (Point p) {

}

p.setLocation (40, 75);
cout << "ex:" << p.getX() << "," << p.getY¥() << endl;

// 1,2
// ex:40,75
// 1,2

Object copying

« a stack-allocated object is copied whenever you:
— pass it as a parameter foo(pl);
— return itreturn p;
— assign one object to another pl = p2;
< the above rules do not apply to pointers

— object's state is still (shallowly) copied if you
dereference/assign

*ptrl = *ptr2;
* You can control how objects are copied
by redefining the = operator for your class (ugh)

Objects as parameters

* We generally don't pass objects as parameters like
this:
double Point::distance (Point p) {
int dx = x - p.getX();
int dy =y - p.get¥();
return sqrt(dx * dx + dy * dy);
}
» on every call, the entire parameter object p will be
copied
« this is slow and wastes time/memory
it also would prevent us from writing a method that
modifies p

References to objects
« Instead, we pass a reference or pointer to the object:

double Point::distance(Pointé& p) {
int dx = x - p.getX();
int dy =y - p.get¥();
return sqrt(dx * dx + dy * dy);

« now the parameter object p will be shared, not copied
« are there any potential problems with this code?

const object references

« If the method will not modify its parameter, make it
const

double Point::distance(const Pointé& p) {
int dx = x - p.getX();
int dy = y - p.get¥();
return sqrt(dx * dx + dy * dy);
}
« the distance method is promising not to modify p
— if it does, a compiler error occurs
— clients can pass Points via references without fear
that their state will be changed

const methods

« If the method will not modify the object itself, make the method
const:
double Point::distance (const Pointé& p) const {
int dx = x - p.getX();
int dy = y - p.get¥();
return sqrt(dx * dx + dy * dy);
}
« aconst after the parameter list signifies that the method will not
modify the object upon which it is called (this)
— helps clients know which methods aren't mutators and helps
the compiler optimize method calls
« aconst reference only allows const methods to be called on it

12/4/2009

const and pointers

const Point* p

— p points to a Point that is const; cannot modify that Point's state

— can reassign p to point to a different Point (as long as it is const)
Point* const p

— pis a constant pointer; cannot reassign p to point to a different

object

— can change the Point object's state by calling methods on it
const Point* const p

— p points to a Point that is const; cannot modify that Point's state

— pis a constant pointer; cannot reassign p to point to a different
object
(This is not one of the more beloved features of C++.)

Pointer, reference, etc.?

« How do you decide whether to pass a pointer, reference, or
object? Some principles:
— Minimize the use of object pointers as parameters.
(C++ introduced references for a reason. They are safer
and saner.)
Minimize passing objects by value, because it is slow, it has
to copy the entire object and put it onto the stack, etc.

In other words, pass objects as references as much as
possible; but if you really want a copy, pass it as a normal
object.

Objects as fields are usually pointers (why not references?).
If you are not going to modify an object, declare it as const.
— If your method returns a pointer/object field that you don't
want the client to modify, declare its return type as const.

Operator overloading

» operator overloading: Redefining the meaning of a C++ operator
in particular contexts.
— example: the string class overloads + to do concatenation
— example: the stream classes overload << and >> to do I/O
+ itis legal to redefine almost all C++ operators
- () [1~%!'] &<<> ===1=<> andmanyothers
— intended for when that operator "makes sense" for your type
« example: a Matrix class's * operator would do matrix
multiplication
« allows your classes to be "first class citizens" like
primitives
— cannot redefine operators between built-in types (int +
int)
« auseful, but very easy to abuse, feature of C++

Overloading syntax

public:

returntype operator op (parameters);

// declare in .h

returntype classname::operator op(parameters) {

statements; // define in .cpp

}
« most overloaded operators are placed inside a class
— example: overriding Point + Point

« some overloaded operators don't go inside your class
— example: overriding int + Point

Overloaded comparison ops

+ Override == to make objects comparable like Java's equals
— comparison operators like == return type bool
— by default == doesn’t work on objects (what about Point*?)
— if you override ==, you must also override !'=
// Point.h
bool Point::operator==(const Pointé& p);

// Point.cpp
bool Point::operator==(const Point& p) {
return x == p.getX() && y == p.get¥();
}
» Override < etc. to make comparable like Java's compareTo

— even if you override < and ==, you must still manually
override <=

Overriding <<

« Override << to make your objects printable like Java's toString
- << goes outside your class (not a member)
- << takes a stream reference and your object
— returns a reference to the same stream passed in

// Point.cpp
std::ostreamé& operator<<(std::ostream& out, const
Pointé& p) {

out << " (" << p.getX() << ", " << p.getY¥() << ")";

return out;

Designing a class

» Suppose we want to design a class LineSegment,
where each object represents a 2D line segment
between two points.

* We should be able to:

— create a segment between two pairs of
coordinates, A

ask a segment for its endpoint coord

ask a segment for its length,

ask a segment for its slope, and
translate (shift) a line segment's position.

LineSegment.h

#include "Point.h"

class LineSegment {

private:
Point* pl; // endpoints of line
Point* p2;

public:
LineSegment (int x1, int yl, int x2, int y2);
double getX1() const;
double getYl() const;
double getX2() const;
double get¥2() const;
double length() const;
double slope() const;
void translate(int dx, int dy);

LineSegment.cpp

#include "LineSegment.h"

LineSegment: :LineSegment (int x1, int yl, int x2, int y2) {
Pl = new Point(xl, yl);
P2 = new Point(x2, y2);

}

double LineSegment::length() const {
return pl->distance (*p2) ;

}

double LineSegment::slope() const {
int dy = p2->getY() - pl->getY();
int dx = p2->getX() - pl->getX();
return (double) dy / dx;

}

void LineSegment::translate(int dx, int dy) {
pl->setLocation (pl->getX() + dx, pl->get¥() + dy);
p2->setLocation (p2->getX() + dx, p2->get¥() + dy);

Problem: memory leaks

« if we create LineSegment objects, we'll leak memory:
LineSegment* line = new LineSegment(l, 2, 5, 4);

delete line;
« the two Point Objects p1 and p2 inside line are not
freed
— the delete Operator is a "shallow" delete operation
— it doesn't recursively delete/free pointers nested
inside the object
* why not?

Destructors

public:
~classname () ; // declare in .h
classname: :~classname() { // define in .cpp
statements;
}
« destructor: Code that manages the deallocation of an object.
— usually not needed if the object has no pointer fields
— called by delete and when a stack object goes out of
scope
— the default destructor frees the object's memory, but no
pointers
« Java has a very similar feature to destructors, called a
finalizer

Destructor example

// LineSegment.h
class LineSegment {
private:
Point* pl;
Point* p2;
public:
LineSegment (int x1, int yl, int x2, int y2);
double getX1l() const;

~LineSegment () ;
}i
// LineSegment.cpp
Li t::~Li t() {
delete pl;
delete p2;

12/4/2009

12/4/2009

Shallow copy bug

« A subtle problem occurs when we copy LineSegment objects:
- LineSegment linel(0, 0, 10, 20);
- LineSegment line2 = linel;
- line2.translate(5, 3);
- cout << linel.getX2() << endl; // 15 11
* When you declare one object using another, its state is copied
— itis a shallow copy; any pointers in the second object will
store the same address as in the first object (both point to
same place)
— if you change what's pointed to by one, it affects the other
« Even worse: the same p1, p2 above are freed twice!

Copy constructors

« copy constructor: Copies one object's state to another.
— called when you assign one object to another at declaration
LineSegment line2 = linel;
— can be called explicitly (same behavior as above)
LineSegment line2(linel);
— called when an object is passed as a parameter
foo(linel); // void foo(LineSegment 1)...
« if your class doesn't have a copy constructor,
— the default one just copies all members of the object
— if any members are objects, it calls their copy constructors
« (but not pointers)

Copy constructor example

// LineSegment.h
class LineSegment {
private:
Point* pl;
Point* p2;
public:
LineSegment (int x1, int yl, int x2, int y2);
Li t(const Li t& line);

// LineSegment.cpp

Li t::Li t (const Li t& line) {
Pl = new Point(line.getX1l(), line.getYl());
P2 = new Point(line.getX2(), line.get¥Y2());

Assignment bug

« Another problem with assigning LineSegment objects:

LineSegment linel(0, 0, 10, 20);
LineSegment line2(9, 9, 50, 80);

line2 = linel;
line2.translate(5, 3);
cout << linel.getX2() << endl; // 15 again !!!

* When you assign one object to another, its state is copied
— itis a shallow copy; if you change one, it affects the other
— assignment with = does NOT call the copy constructor

« We wish the = operator behaved differently...

Overloading =

// LineSegment.h
class LineSegment {
private:
Point* pl;
Point* p2;
void init(int x1, int yl, int x2, int y2);

public:
LineSegment (int x1, int yl, int x2, int y2);

LineSegment (const LineSegmenté& line);

const LineSegment& operator=(const LineSegment& rhs);

Overloading =, cont'd.

// LineSegment.cpp

void LineSegment::init(int x1, int yl, int x2, int y2) {
Pl = new Point(xl, yl); // common helper init function
P2 = new Point(x2, y2);

}

LineSegment: :LineSegment (int x1, int yl, int x2, int y2) {
init(xl, yl, x2, y2);

Li ::Li (const Li & line) {
init(line.getX1(), line.getYl(), line.getX2(), line.get¥2());

}

const LineSegment& LineSegment::operator=(const LineSegments rhs) {
init(rhs.getX1(), rhs.getYl(), rhs.getX2(), rhs.get¥2());
return *this; // always return *this from =

12/4/2009

An extremely subtle bug

« if your object was storing pointers to two Points p1,
p2 but is then assigned to have new state using =,
the old pointers will leak!

* Instead
const Lir gment& Lir gment: :operator=(const
LineSegment& rhs) {
delete pl;
delete p2;

init(rhs.getX1(), rhs.getYl(), rhs.getX2(),
rhs.getY¥2());

return *this; // always return *this from

Another subtle bug

« if an object is assigned to itself, our = operator will crash!
LineSegment linel (10, 20, 30,

linel = linel;

* Instead
const Li t& Li
rhs) {
if (this !'= &rhs) {
delete pl;
delete p2;

init(rhs.getX1(), rhs.getYl(), rhs.getX2(), rhs.get¥2()):;

}

return *this; // always return *this from

t::operator=(const LineSegmenté&

Recap
Point pl; calls 0-argument constructor
Point p2(17, 5); calls 2-argument constructor
Point p3 = p2; calls copy constructor
Point p4(p3); calls copy constructor
foo (p4) ; calls copy constructor
pé4 = pl; calls operator =

When writing a class with pointers as fields, you must define:

— adestructor
— acopy constructor
— an overloaded operator =

Questions?

CSE303Au09

