
12/4/2009

1

David Notkin  Autumn 2009  CSE303 Lecture 26

If you think C++ is not overly complicated, just what is a

protected abstract virtual base pure virtual private

destructor and when was the last time you needed one?

— Tom Cargill

If C++ has taught me one thing, it’s this: Just because the

system is consistent doesn’t mean it’s not the work of

Satan. — Andrew Plotkin

The plan

11/30 C++ intro 12/2 C++ intro 12/4 C++ intro

12/7

Social

12/9

Implications

12/11

Final prep, evaluations

12/15

Final

CSE303 Au09 2

Constructing objects

• client code creating stack-allocated object:

type name(parameters);

Point p1(4, -2);

• creating heap allocated (pointer to) object:

type* name = new type(parameters);

Point* p2 = new Point(5, 17);

• in Java, all objects are allocated on the heap

• in Java, all variables of object types are references

(pointers)

A client program
#include <iostream>

#include "Point.h"

using namespace std;

int main() {

Point p1(1, 2);

Point p2(4, 6);

cout << "p1 is: (" << p1.getX() << ", "

<< p1.getY() << ")" << endl; // p1 is: (1, 2)

cout << "p2 is: (" << p2.getX() << ", "

<< p2.getY() << ")" << endl; // p2 is: (4, 6)

cout << "dist : " << p1.distance(p2) << endl;

return 0; // dist : 5

}

Client with pointers
#include <iostream>

#include "Point.h"

using namespace std;

int main() {

Point* p1 = new Point(1, 2);

Point* p2 = new Point(4, 6);

cout << "p1 is: (" << p1->getX() << ", "

<< p1->getY() << ")" << endl; // p1 is: (1, 2)

cout << "p2 is: (" << p2->getX() << ", "

<< p2->getY() << ")" << endl; // p2 is: (4, 6)

cout << "dist : " << p1->distance(*p2) << endl;

delete p1; // dist : 5

delete p2; // free

return 0;

}

Stack vs. heap objects

• which is better, stack or pointers?

– if it needs to live beyond function call (e.g. returning), use a

pointer

– if allocating a whole bunch of objects, use pointers

• "primitive semantics" can be used on objects

– stack objects behave use primitive value semantics (like ints)

• new and delete replace malloc and free

– new does all of the following:

• allocates memory for a new object

• calls the class's constructor, using the new object as this

• returns a pointer to the new object

– must call delete on any object you create with new, else it

leaks

12/4/2009

2

Why doesn't this code change p1?

int main() {

Point p1(1, 2);

cout << p1.getX() << "," << p1.getY() << endl;

example(p1);

cout << p1.getX() << "," << p1.getY() << endl;

return 0;

}

void example(Point p) {

p.setLocation(40, 75);

cout << "ex:" << p.getX() << "," << p.getY() << endl;

}

// 1,2

// ex:40,75

// 1,2

Object copying

• a stack-allocated object is copied whenever you:

– pass it as a parameter foo(p1);

– return it return p;

– assign one object to another p1 = p2;

• the above rules do not apply to pointers

– object's state is still (shallowly) copied if you

dereference/assign

*ptr1 = *ptr2;

• You can control how objects are copied

by redefining the = operator for your class (ugh)

Objects as parameters

• We generally don't pass objects as parameters like

this:
double Point::distance(Point p) {

int dx = x - p.getX();

int dy = y - p.getY();

return sqrt(dx * dx + dy * dy);

}

• on every call, the entire parameter object p will be

copied

• this is slow and wastes time/memory

• it also would prevent us from writing a method that

modifies p

References to objects

• Instead, we pass a reference or pointer to the object:

double Point::distance(Point& p) {

int dx = x - p.getX();

int dy = y - p.getY();

return sqrt(dx * dx + dy * dy);

}

• now the parameter object p will be shared, not copied

• are there any potential problems with this code?

const object references

• If the method will not modify its parameter, make it
const

double Point::distance(const Point& p) {

int dx = x - p.getX();

int dy = y - p.getY();

return sqrt(dx * dx + dy * dy);

}

• the distance method is promising not to modify p

– if it does, a compiler error occurs

– clients can pass Points via references without fear

that their state will be changed

const methods

• If the method will not modify the object itself, make the method

const:

double Point::distance(const Point& p) const {

int dx = x - p.getX();

int dy = y - p.getY();

return sqrt(dx * dx + dy * dy);

}

• a const after the parameter list signifies that the method will not

modify the object upon which it is called (this)

– helps clients know which methods aren't mutators and helps

the compiler optimize method calls

• a const reference only allows const methods to be called on it

12/4/2009

3

const and pointers

• const Point* p

– p points to a Point that is const; cannot modify that Point's state

– can reassign p to point to a different Point (as long as it is const)

• Point* const p

– p is a constant pointer; cannot reassign p to point to a different

object

– can change the Point object's state by calling methods on it

• const Point* const p

– p points to a Point that is const; cannot modify that Point's state

– p is a constant pointer; cannot reassign p to point to a different

object

• (This is not one of the more beloved features of C++.)

Pointer, reference, etc.?

• How do you decide whether to pass a pointer, reference, or

object? Some principles:

– Minimize the use of object pointers as parameters.

(C++ introduced references for a reason. They are safer

and saner.)

– Minimize passing objects by value, because it is slow, it has

to copy the entire object and put it onto the stack, etc.

– In other words, pass objects as references as much as

possible; but if you really want a copy, pass it as a normal

object.

– Objects as fields are usually pointers (why not references?).

– If you are not going to modify an object, declare it as const.

– If your method returns a pointer/object field that you don't

want the client to modify, declare its return type as const.

Operator overloading

• operator overloading: Redefining the meaning of a C++ operator

in particular contexts.

– example: the string class overloads + to do concatenation

– example: the stream classes overload << and >> to do I/O

• it is legal to redefine almost all C++ operators

– () [] ^ % ! | & << >> = == != < > and many others

– intended for when that operator "makes sense" for your type

• example: a Matrix class's * operator would do matrix

multiplication

• allows your classes to be "first class citizens" like

primitives

– cannot redefine operators between built-in types (int +

int)

• a useful, but very easy to abuse, feature of C++

Overloading syntax

public: // declare in .h

returntype operator op(parameters);

returntype classname::operator op(parameters) {

statements; // define in .cpp

}

• most overloaded operators are placed inside a class

– example: overriding Point + Point

• some overloaded operators don't go inside your class

– example: overriding int + Point

Overloaded comparison ops

• Override == to make objects comparable like Java's equals

– comparison operators like == return type bool

– by default == doesn’t work on objects (what about Point*?)

– if you override == , you must also override !=

// Point.h

bool Point::operator==(const Point& p);

// Point.cpp

bool Point::operator==(const Point& p) {

return x == p.getX() && y == p.getY();

}

• Override < etc. to make comparable like Java's compareTo

– even if you override < and ==, you must still manually

override <=

Overriding <<

• Override << to make your objects printable like Java's toString

– << goes outside your class (not a member)

– << takes a stream reference and your object

– returns a reference to the same stream passed in

// Point.cpp

std::ostream& operator<<(std::ostream& out, const

Point& p) {

out << "(" << p.getX() << ", " << p.getY() << ")";

return out;

}

12/4/2009

4

Designing a class

• Suppose we want to design a class LineSegment,

where each object represents a 2D line segment

between two points.

• We should be able to:

– create a segment between two pairs of

coordinates,

– ask a segment for its endpoint coordinates,

– ask a segment for its length,

– ask a segment for its slope, and

– translate (shift) a line segment's position.

LineSegment.h

#include "Point.h"

class LineSegment {

private:

Point* p1; // endpoints of line

Point* p2;

public:

LineSegment(int x1, int y1, int x2, int y2);

double getX1() const;

double getY1() const;

double getX2() const;

double getY2() const;

double length() const;

double slope() const;

void translate(int dx, int dy);

};

LineSegment.cpp

#include "LineSegment.h"

LineSegment::LineSegment(int x1, int y1, int x2, int y2) {

p1 = new Point(x1, y1);

p2 = new Point(x2, y2);

}

double LineSegment::length() const {

return p1->distance(*p2);

}

double LineSegment::slope() const {

int dy = p2->getY() - p1->getY();

int dx = p2->getX() - p1->getX();

return (double) dy / dx;

}

void LineSegment::translate(int dx, int dy) {

p1->setLocation(p1->getX() + dx, p1->getY() + dy);

p2->setLocation(p2->getX() + dx, p2->getY() + dy);

}

...

Problem: memory leaks

• if we create LineSegment objects, we'll leak memory:
LineSegment* line = new LineSegment(1, 2, 5, 4);

...

delete line;

• the two Point objects p1 and p2 inside line are not

freed

– the delete operator is a "shallow" delete operation

– it doesn't recursively delete/free pointers nested

inside the object

• why not?

Destructors

public:

~classname(); // declare in .h

classname::~classname() { // define in .cpp

statements;

}

• destructor: Code that manages the deallocation of an object.

– usually not needed if the object has no pointer fields

– called by delete and when a stack object goes out of

scope

– the default destructor frees the object's memory, but no

pointers

• Java has a very similar feature to destructors, called a

finalizer

Destructor example

// LineSegment.h

class LineSegment {

private:

Point* p1;

Point* p2;

public:

LineSegment(int x1, int y1, int x2, int y2);

double getX1() const;

...

~LineSegment();

};

// LineSegment.cpp

LineSegment::~LineSegment() {

delete p1;

delete p2;

}

12/4/2009

5

Shallow copy bug

• A subtle problem occurs when we copy LineSegment objects:

– LineSegment line1(0, 0, 10, 20);

– LineSegment line2 = line1;

– line2.translate(5, 3);

– cout << line1.getX2() << endl; // 15 !!!

• When you declare one object using another, its state is copied

– it is a shallow copy; any pointers in the second object will

store the same address as in the first object (both point to

same place)

– if you change what's pointed to by one, it affects the other

• Even worse: the same p1, p2 above are freed twice!

Copy constructors

• copy constructor: Copies one object's state to another.

– called when you assign one object to another at declaration

LineSegment line2 = line1;

– can be called explicitly (same behavior as above)

LineSegment line2(line1);

– called when an object is passed as a parameter

foo(line1); // void foo(LineSegment l)...

• if your class doesn't have a copy constructor,

– the default one just copies all members of the object

– if any members are objects, it calls their copy constructors

• (but not pointers)

Copy constructor example

// LineSegment.h

class LineSegment {

private:

Point* p1;

Point* p2;

public:

LineSegment(int x1, int y1, int x2, int y2);

LineSegment(const LineSegment& line);

…

// LineSegment.cpp

LineSegment::LineSegment(const LineSegment& line) {

p1 = new Point(line.getX1(), line.getY1());

p2 = new Point(line.getX2(), line.getY2());

}

Assignment bug

• Another problem with assigning LineSegment objects:

LineSegment line1(0, 0, 10, 20);

LineSegment line2(9, 9, 50, 80);

...

line2 = line1;

line2.translate(5, 3);

cout << line1.getX2() << endl; // 15 again !!!

• When you assign one object to another, its state is copied

– it is a shallow copy; if you change one, it affects the other

– assignment with = does NOT call the copy constructor

• We wish the = operator behaved differently...

Overloading =

// LineSegment.h

class LineSegment {

private:

Point* p1;

Point* p2;

void init(int x1, int y1, int x2, int y2);

public:

LineSegment(int x1, int y1, int x2, int y2);

LineSegment(const LineSegment& line);

...

const LineSegment& operator=(const LineSegment& rhs);

...

Overloading = , cont'd.

// LineSegment.cpp

void LineSegment::init(int x1, int y1, int x2, int y2) {

p1 = new Point(x1, y1); // common helper init function

p2 = new Point(x2, y2);

}

LineSegment::LineSegment(int x1, int y1, int x2, int y2) {

init(x1, y1, x2, y2);

}

LineSegment::LineSegment(const LineSegment& line) {

init(line.getX1(), line.getY1(), line.getX2(), line.getY2());

}

const LineSegment& LineSegment::operator=(const LineSegment& rhs) {

init(rhs.getX1(), rhs.getY1(), rhs.getX2(), rhs.getY2());

return *this; // always return *this from =

}

12/4/2009

6

An extremely subtle bug

• if your object was storing pointers to two Points p1,

p2 but is then assigned to have new state using =,

the old pointers will leak!

• Instead
const LineSegment& LineSegment::operator=(const

LineSegment& rhs) {

delete p1;

delete p2;

init(rhs.getX1(), rhs.getY1(), rhs.getX2(),

rhs.getY2());

return *this; // always return *this from =

}

Another subtle bug

• if an object is assigned to itself, our = operator will crash!
LineSegment line1(10, 20, 30, 40);

...

line1 = line1;

• Instead
const LineSegment& LineSegment::operator=(const LineSegment&

rhs) {

if (this != &rhs) {

delete p1;

delete p2;

init(rhs.getX1(), rhs.getY1(), rhs.getX2(), rhs.getY2());

}

return *this; // always return *this from =

}

Recap

• When writing a class with pointers as fields, you must define:

– a destructor

– a copy constructor

– an overloaded operator =

Point p1; calls 0-argument constructor

Point p2(17, 5); calls 2-argument constructor

Point p3 = p2; calls copy constructor

Point p4(p3); calls copy constructor

foo(p4); calls copy constructor

p4 = p1; calls operator =

Questions?

CSE303 Au09 34

