
12/2/2009

1

David Notkin  Autumn 2009  CSE303 Lecture 25

The plan

11/30 C++ intro 12/2 C++ intro 12/4

12/7 12/9 12/11

Final prep, evaluations

12/15

Final

CSE303 Au09 2

• HW7 is out; new PM due date

• Finish last lecture

References

• type& name = variable;

• reference: A variable that is a direct alias for another variable.

– any changes made to the reference will affect the original

– like pointers, but more constrained and simpler syntax

– an effort to "fix" many problems with C's implementation of 

pointers

• Example:
int x = 3;

int& r = x;     // now use r just like any int

r++;            // r == 4, x == 4

• value on right side of = must be a variable, not an 

expression/cast

References vs. pointers

• don't use * and & to reference / dereference   (just & at 

assignment)

• cannot refer directly to a reference;  just refers to what it refers 

to

• a reference must be initialized at declaration

– int& r;        // error

• a reference cannot be reassigned to refer to something else

int x = 3,  y = 5;

int& r = x;

r = y;         // sets x == 5, r == 5

• a reference cannot be null, and can only be "invalid" if it refers to 

an object/memory that has gone out of scope or was freed

Reference parameters

returntype name(type& name, ...) {

...

}

• client passes parameter using normal syntax

• if function changes parameter's value, client variable 

will change

• you almost never want to return a reference

– except in certain cases in OOP

const and references

• const: Constant, cannot be changed.

– used much, much more in C++ than in C

– can have many meanings (const pointer to a const 

int?)
void printSquare(const int& i){

i = i * i;             // error

cout << i << endl;

}

int main() {

int i = 5;

printSquare(i);

}



12/2/2009

2

Strings

• #include <string>

• C++ actually has a class for strings

– much like Java strings, but mutable (can be 

changed)

– not the same as a "literal" or a char*, but can be 

implicitly converted

string str1 = "Hello";   // impl. conv.

• Concatenating and operators
string str3 = str1 + str2;

if (str1 == str2) {   // compares characters

if (str1 < str3) {    // compares by ABC order

char c = str3[0];     // first character

String methods

string s = "Goodbye world!";

s.insert(7, " cruel");  // "Goodbye cruel world!"

method description

append(str) append another string to end of this one

c_str() return a const char* for a C++ string

clear() removes all characters

compare(str) like Java's compareTo

find(str [, index])

rfind(str [, index])

search for index of a substring

insert(index, str) add characters to this string at given index

length() number of characters in string

push_back(ch) adds a character to end of this string

replace(index, len, str) replace given range with new text

substr(start [, len]) substring from given start index

String concatenation

• a string can do + concatenation with a string or char*,

but not with an int or other type:

string s1 = "hello";

string s2 = "there";

s1 = s1 + " " + s2;   // ok

s1 = s1 + 42;         // error

• to build a string out of many values, use a stringstream

– works like an ostream (cout) but outputs data into a string

– call .str() on stringstream once done to extract it as a string

#include <sstream>

stringstream stream;

stream << s1 << " " << s2 << 42;

s1 = stream.str();    // ok

Libraries

#include <cmath>

library description

cassert assertion functions for testing (assert)

cctype char type functions (isalpha, tolower)

cmath math functions (sqrt, abs, log, cos)

cstdio standard I/O library (fopen, rename, printf)

cstdlib standard functions (rand, exit, malloc)

cstring char* functions (strcpy, strlen)

(not the same as <string>, the string class)

ctime time functions (clock, time)

Arrays

• stack-allocated (same as C):

type name[size];

• heap-allocated:

type* name = new type[size];

– C++ uses new and delete keywords to allocate/free memory

– arrays are still very dumb (don't know size, etc.)

int* nums = new int[10];

for (int i = 0; i < 10; i++) {

nums[i] = i * i;

}

...

delete[] nums;

malloc vs. new

malloc new

place in language a function an operator (and a keyword)

how often used in C often never (not in language)

how often used in C++ rarely frequently

allocates memory for anything arrays, structs, and objects

returns what void*
(requires cast)

appropriate type (no cast)

when out of memory returns NULL throws an exception

deallocating free delete (or delete[])



12/2/2009

3

Exceptions

• exception: An error represented as an object or variable.

– C handles errors by returning error codes

– C++ can also represent errors as exceptions that are thrown 

/ caught

• throwing an exception with throw:

double sqrt(double n) {

if (n < 0) {

throw n;   // kaboom

}

...

• can throw anything (a string, int, etc.)

• can make an exception class if you want to throw lots of info:
#include <exception>

More about exceptions

• catching an exception with try/catch:
try {

double root = sqrt(x);

} catch (double d) {

cout << d << " can't be squirted!" << 

endl;

}

• throw keyword indicates what exception(s) a method 

may throw
– void f() throw();      // none

– void f() throw(int);   // may throw ints

• predefined exceptions (from std::exception): 
bad_alloc, bad_cast, ios_base::failure, 

...

C++ classes

• class declaration syntax (in .h file):

class name {

private:

members;

public:

members;

};

• class member definition syntax (in .cpp file):

returntype classname::methodname(parameters) {

statements;

}

• unlike in Java, any .cpp or .h file can declare or define any class 

(although the convention is still to put the Foo class in 

Foo.h/cpp)

A class's .h file

#ifndef _POINT_H

#define _POINT_H

class Point {

private:

int x;

int y;  // fields

public:

Point(int x, int y);   // constructor

int getX();            // methods

int getY();

double distance(Point& p);

void setLocation(int x, int y);

};

#endif

A class's .cpp file

#include "Point.h"                // this is Point.cpp

Point::Point(int x, int y) {      // constructor

this->x = x;

this->y = y;

}

int Point::getX() {

return x;

}

int Point::getY() {

return y;

}

void Point::setLocation(int x, int y) {

this->x = x;

this->y = y;

}

Simple example

• A Point constructor with no x or y parameter; if no x or y value is 

passed, the point is constructed at (0, 0).

• A translate method that shifts the position of a point by a given 

dx and dy.

// Point.h

public:

Point(int x = 0, int y = 0);

// Point.cpp

void Point::translate(int dx, int dy) {

setLocation(x + dx, y + dy);

}



12/2/2009

4

More about constructors

• initialization list: alternate syntax for storing 

parameters to fields

– supposedly slightly faster for the compiler
class::class(params) : field(param), ..., 

field(param) {

statements;

}

Point::Point(int x, int y) : x(x), y(y)  {}

• if you don't write a constructor, you get a default () 

constructor

– initializes all members to 0-equivalents (0.0, null, 

false, etc.)

Multiple constructors

• if your class has multiple constructors:

– it doesn't work to have one constructor call 

another

– but you can create a common init function and 

have both call it

CSE303 Au09 20

Constructing objects

• client code creating stack-allocated object:

type name(parameters);

Point p1(4, -2);

• creating heap allocated (pointer to) object:

type* name = new type(parameters);

Point* p2 = new Point(5, 17);

• in Java, all objects are allocated on the heap

• in Java, all variables of object types are references 

(pointers)

A client program
#include <iostream>

#include "Point.h"

using namespace std;

int main() {

Point p1(1, 2);

Point p2(4, 6);

cout << "p1 is: (" << p1.getX() << ", "

<< p1.getY() << ")" << endl;  // p1 is: (1, 2)

cout << "p2 is: (" << p2.getX() << ", "

<< p2.getY() << ")" << endl;  // p2 is: (4, 6)

cout << "dist : " << p1.distance(p2) << endl;

return 0;                          // dist : 5

}

Client with pointers
#include <iostream>

#include "Point.h"

using namespace std;

int main() {

Point* p1 = new Point(1, 2);

Point* p2 = new Point(4, 6);

cout << "p1 is: (" << p1->getX() << ", "

<< p1->getY() << ")" << endl; // p1 is: (1, 2)

cout << "p2 is: (" << p2->getX() << ", "

<< p2->getY() << ")" << endl; // p2 is: (4, 6)

cout << "dist : " << p1->distance(*p2) << endl;

delete p1;                         // dist : 5

delete p2;   // free

return 0;

}

Stack vs. heap objects

• which is better, stack or pointers?

– if it needs to live beyond function call (e.g. returning), use a 

pointer

– if allocating a whole bunch of objects, use pointers

• "primitive semantics" can be used on objects

– stack objects behave use primitive value semantics (like ints)

• new and delete replace malloc and free

– new does all of the following:

• allocates memory for a new object

• calls the class's constructor, using the new object as this

• returns a pointer to the new object

– must call delete on any object you create with new, else it 

leaks



12/2/2009

5

Why doesn't this code change p1?

int main() {

Point p1(1, 2);

cout << p1.getX() << "," << p1.getY() << endl;

example(p1);

cout << p1.getX() << "," << p1.getY() << endl;

return 0;

}

void example(Point p) {

p.setLocation(40, 75);

cout << "ex:" << p.getX() << "," << p.getY() << endl;

}

// 1,2

// ex:40,75

// 1,2

Object copying

• a stack-allocated object is copied whenever you:

– pass it as a parameter foo(p1);

– return it return p;

– assign one object to another p1 = p2;

• the above rules do not apply to pointers

– object's state is still (shallowly) copied if you 

dereference/assign

*ptr1 = *ptr2;

• You can control how objects are copied

by redefining the = operator for your class (ugh)

Objects as parameters

• We generally don't pass objects as parameters like 

this:
double Point::distance(Point p) {

int dx = x - p.getX();

int dy = y - p.getY();

return sqrt(dx * dx + dy * dy);

}

• on every call, the entire parameter object p will be 

copied

• this is slow and wastes time/memory

• it also would prevent us from writing a method that 

modifies p

References to objects

• Instead, we pass a reference or pointer to the object:

double Point::distance(Point& p) {

int dx = x - p.getX();

int dy = y - p.getY();

return sqrt(dx * dx + dy * dy);

}

• now the parameter object p will be shared, not copied

• are there any potential problems with this code?

const object references

• If the method will not modify its parameter, make it 
const

double Point::distance(const Point& p) {

int dx = x - p.getX();

int dy = y - p.getY();

return sqrt(dx * dx + dy * dy);

}

• the distance method is promising not to modify p

– if it does, a compiler error occurs

– clients can pass Points via references without fear 

that their state will be changed

const methods

• If the method will not modify the object itself, make  the method

const:

double Point::distance(const Point& p) const {

int dx = x - p.getX();

int dy = y - p.getY();

return sqrt(dx * dx + dy * dy);

}

• a const after the parameter list signifies that the method will not 

modify the object upon which it is called (this)

– helps clients know which methods aren't mutators and helps 

the compiler optimize method calls

• a const reference only allows const methods to be called on it



12/2/2009

6

const and pointers

• const Point* p

– p points to a Point that is const; cannot modify that Point's state

– can reassign p to point to a different Point (as long as it is const)

• Point* const p

– p is a constant pointer; cannot reassign p to point to a different 

object

– can change the Point object's state by calling methods on it

• const Point* const p

– p points to a Point that is const; cannot modify that Point's state

– p is a constant pointer; cannot reassign p to point to a different 

object

• (This is not one of the more beloved features of C++.)

Pointer, reference, etc.?

• How do you decide whether to pass a pointer, reference, or 

object?  Some principles:

– Minimize the use of object pointers as parameters.

(C++ introduced references for a reason.  They are safer 

and saner.)

– Minimize passing objects by value, because it is slow, it has 

to copy the entire object and put it onto the stack, etc.

– In other words, pass objects as references as much as 

possible; but if you really want a copy, pass it as a normal 

object.

– Objects as fields are usually pointers (why not references?).

– If you are not going to modify an object, declare it as const.

– If your method returns a pointer/object field that you don't 

want the client to modify, declare its return type as const.

Questions?

CSE303 Au09 33


