12/2/2009

David Notkin e Autumn 2009 ® CSE303 Lecture 25

The plan
11/30 C++ intro 12/2 C++intro 12/4
12/7 12/9 12/11
Final prep, evaluations
12/15
Final

< HW?7 is out; new PM due date
« Finish last lecture

CSE303Au09 2

References

* type& name = variable;

reference: A variable that is a direct alias for another variable.
— any changes made to the reference will affect the original
— like pointers, but more constrained and simpler syntax
— an effort to "fix" many problems with C's implementation of

pointers
* Example:
int x = 3;
int& r = x; // now use r just like any int
r++; // r==4, x == 4

« value on right side of = must be a variable, not an
expression/cast

References vs. pointers

« don'tuse * and & to reference / dereference (just & at
assignment)
« cannot refer directly to a reference; just refers to what it refers
to
« areference must be initialized at declaration
- inté& r; // error
« areference cannot be reassigned to refer to something else
int x =3, y=5;
int& r = x;
r=y; // sets x == 5, r == 5
« areference cannot be null, and can only be "invalid" if it refers to
an object/memory that has gone out of scope or was freed

Reference parameters
returntype name (type& name, ...) {

}
« client passes parameter using normal syntax
if function changes parameter's value, client variable
will change
+ you almost never want to return a reference
— except in certain cases in OOP

const and references

< const: Constant, cannot be changed.
— used much, much more in C++ than in C
— can have many meanings (const pointer to a const

int?)
void printSquare(const inté& i) {
i=4i*i; // error

cout << i << endl;

int main() {
int i = 5;

printSquare (i) ;




12/2/2009

Strings

¢ #include <string>
» C++ actually has a class for strings
— much like Java strings, but mutable (can be
changed)
— not the same as a "literal" or a char*, but can be
implicitly converted

string strl = "Hello"; // impl. conv.

» Concatenating and operators
string str3 = strl + str2;
if (strl == str2) { // compares characters
if (strl < str3) { // compares by ABC order

char ¢ = str3[0]; // first character

String methods

method description
append (str) append another string to end of this one
c_str() return a const char* for a C++ string
clear() removes all characters

compare (str)

like Java's compareTo

find(str [, index])
rfind(str [, index])

search for index of a substring

insert(index, str)

add characters to this string at given index

length ()

number of characters in string

push_back (ch)

adds a character to end of this string

replace (index, len, str)

replace given range with new text

substr(start [, len])

substring from given start index

string s = "Goodbye world!";

s.insert (7, " cruel");

// "Goodbye cruel world!"

String concatenation

» astring can do + concatenation with a string or char*,
but not with an int or other type:

string sl = "hello";

string s2 = "there";

sl =sl+ " " + s2; // ok
sl = sl + 42; // error

+ to build a string out of many values, use a stringstream
— works like an ostream (cout) but outputs data into a string
— call .str() on stringstream once done to extract it as a string
#include <sstream>
stringstream stream;
stream << sl << " " << 852 << 42;
sl = stream.str(); // ok

Libraries
#include <cmath>
library description
cassert assertion functions for testing (assert)
cctype char type functions (isalpha, tolower)
cmath math functions (sqrt, abs, log, cos)
cstdio standard 1/0 library (fopen, rename, printf)
cstdlib standard functions (rand, exit, malloc)
cstring char* functions (strcpy, strlen)
(not the same as <string>, the string class)
ctime time functions (clock, time)

Arrays

+ stack-allocated (same as C):
type name[size];
» heap-allocated:
type* name = new typel[size];
— C++ uses new and delete keywords to allocate/free memory
— arrays are still very dumb (don't know size, etc.)
int* nums = new int[10];
for (int i = 0; i < 10; i++) {
nums[i] = i * i;

delete[] nums;

malloc vs. new

malloc new
place in language a function an operator (and a keyword)
how often used in C often never (not in language)
how often used in C++ rarely frequently
allocates memory for anything arrays, structs, and objects
returns what void* appropriate type (no cast)

(requires cast)

when out of memory | returns NULL

throws an exception

deallocating free

delete (or delete[])




12/2/2009

Exceptions

« exception: An error represented as an object or variable.
— C handles errors by returning error codes
— C++ can also represent errors as exceptions that are thrown
/ caught
+ throwing an exception with throw:
double sqgrt(double n) {
if (n < 0) {
throw n; // kaboom
}

« can throw anything (a string, int, etc.)

« can make an exception class if you want to throw lots of info:
#include <exception>

More about exceptions

< catching an exception with try/catch:
try {
double root = sqrt(x);
} catch (double d) {

cout << d << " can't be squirted!" <<
endl;

}
« throw keyword indicates what exception(s) a method
may throw
- void £() throw(); // none
- void f£() throw(int); // may throw ints
« predefined exceptions (from std::exception):
bad_alloc, bad cast, ios_base::failure,

C++ classes

 class declaration syntax (in .h file):
class name {
private:
members;
public:
members;
Y
« class member definition syntax (in .cpp file):
returntype classname::methodname (parameters) {
statements;
}
+ unlike in Java, any .cpp or .h file can declare or define any class
(although the convention is still to put the Foo class in
Foo.h/cpp)

A class's .h file

#ifndef _POINT_H
#define _POINT H
class Point {

private:
int x;
int y; // fields

public:
Point (int x, int y); // constructor
int getX(); // methods
int get¥Y();

double distance(Pointé& p);
void setLocation(int x, int y);
}i
#endif

A class's .cpp file

#include "Point.h"
Point::Point(int x, int y) {

// this is Point.cpp
// constructor
this->x = x;
this->y = y;
}
int Point::getX() {
return x;
}
int Point::get¥Y() {
return y;
}
void Point::setLocation(int x, int y) {
this->x = x;
this->y = y;

Simple example

« A Point constructor with no x or y parameter; if no x or y value is
passed, the point is constructed at (0, 0).

« Atranslate method that shifts the position of a point by a given
dx and dy.

// Point.h
public:
Point(int x = 0, int y = 0);

// Point.cpp
void Point::translate(int dx, int dy) {
setLocation(x + dx, y + dy);




More about constructors

« initialization list: alternate syntax for storing
parameters to fields
— supposedly slightly faster for the compiler

class::class(params) : field(param), ...,
field(param) {

statements;
}
Point::Point(int x, int y) : x(x), y(y) {}
« if you don't write a constructor, you get a default ()
constructor
— initializes all members to 0-equivalents (0.0, null,
false, etc.)

Multiple constructors

« if your class has multiple constructors:

— it doesn't work to have one constructor call
another

— but you can create a common init function and
have both call it

CSE303Au09 20

Constructing objects

« client code creating stack-allocated object:
type name (parameters) ;
Point pl(4, -2);

« creating heap allocated (pointer to) object:
type* name = new type (parameters);
Point* p2 = new Point (5, 17);

+ in Java, all objects are allocated on the heap

» in Java, all variables of object types are references
(pointers)

A client program

#include <iostream>
#include "Point.h"

using namespace std;

int main() {

Point pl(1l, 2);
Point p2(4, 6);
cout << "pl is: (" << pl.getX() << ", "

<< pl.getY() << ")" << endl; // pl is: (1, 2)
cout << "p2 is: (" << p2.getX() << ", "

<< p2.get¥() << ")" << endl; // p2 is: (4, 6)
cout << "dist : " << pl.distance(p2) << endl;
return 0; // dist : 5

Client with pointers

#include <iostream>
#include "Point.h"
using namespace std;

int main() {
Point* pl = new Point(l, 2);
Point* p2 = new Point(4, 6);
cout << "pl is: (" << pl->getX() << ", "
<< pl->get¥() << ")" << endl; // pl is: (1, 2)
cout << "p2 is: (" << p2->getX() << ", "
<< p2->getY¥() << ")" << endl; // p2 is: (4, 6)

cout << "dist : " << pl->distance(*p2) << endl;
delete pl; // dist : 5
delete p2; // free

return 0;

Stack vs. heap objects

< which is better, stack or pointers?

— if it needs to live beyond function call (e.g. returning), use a
pointer

— if allocating a whole bunch of objects, use pointers
« "primitive semantics” can be used on objects
— stack objects behave use primitive value semantics (like ints)
« new and delete replace malloc and free
— new does all of the following:
« allocates memory for a new object
« calls the class's constructor, using the new object as this
« returns a pointer to the new object

— must call delete on any object you create with new, else it
leaks

12/2/2009




12/2/2009

Why doesn't this code change p1?

int main() {

}

Point pl(1, 2);

cout << pl.getX() << "," << pl.get¥() << endl;
example (pl) ;

cout << pl.getX() << "," << pl.get¥() << endl;
return 0;

void example (Point p) {

}

p.setLocation (40, 75);
cout << "ex:" << p.getX() << "," << p.getY¥() << endl;

// 1,2
// ex:40,75
// 1,2

Object copying

« a stack-allocated object is copied whenever you:
— pass it as a parameter foo(pl);
— return itreturn p;
— assign one object to another pl = p2;
< the above rules do not apply to pointers

— object's state is still (shallowly) copied if you
dereference/assign

*ptrl = *ptr2;
* You can control how objects are copied
by redefining the = operator for your class (ugh)

Objects as parameters

* We generally don't pass objects as parameters like
this:
double Point::distance (Point p) {
int dx = x - p.getX();
int dy =y - p.get¥();
return sqrt(dx * dx + dy * dy);
}
» on every call, the entire parameter object p will be
copied
« this is slow and wastes time/memory
it also would prevent us from writing a method that
modifies p

References to objects
« Instead, we pass a reference or pointer to the object:

double Point::distance(Pointé& p) {
int dx = x - p.getX();
int dy =y - p.get¥();
return sqrt(dx * dx + dy * dy);

« now the parameter object p will be shared, not copied
« are there any potential problems with this code?

const object references

« If the method will not modify its parameter, make it
const

double Point::distance(const Pointé& p) {
int dx = x - p.getX();
int dy = y - p.get¥();
return sqrt(dx * dx + dy * dy);
}
« the distance method is promising not to modify p
— if it does, a compiler error occurs
— clients can pass Points via references without fear
that their state will be changed

const methods

« If the method will not modify the object itself, make the method
const:
double Point::distance (const Pointé& p) const {
int dx = x - p.getX();
int dy = y - p.get¥();
return sqrt(dx * dx + dy * dy);
}
« aconst after the parameter list signifies that the method will not
modify the object upon which it is called (this)
— helps clients know which methods aren't mutators and helps
the compiler optimize method calls
« aconst reference only allows const methods to be called on it




12/2/2009

const and pointers

const Point* p

— p points to a Point that is const; cannot modify that Point's state

— can reassign p to point to a different Point (as long as it is const)
Point* const p

— pis a constant pointer; cannot reassign p to point to a different

object

— can change the Point object's state by calling methods on it
const Point* const p

— p points to a Point that is const; cannot modify that Point's state

— pis a constant pointer; cannot reassign p to point to a different
object

(This is not one of the more beloved features of C++.)

Pointer, reference, etc.?

« How do you decide whether to pass a pointer, reference, or
object? Some principles:
— Minimize the use of object pointers as parameters.
(C++ introduced references for a reason. They are safer
and saner.)
Minimize passing objects by value, because it is slow, it has
to copy the entire object and put it onto the stack, etc.
In other words, pass objects as references as much as
possible; but if you really want a copy, pass it as a normal
object.
Objects as fields are usually pointers (why not references?).
If you are not going to modify an object, declare it as const.
— If your method returns a pointer/object field that you don't
want the client to modify, declare its return type as const.

Questions?

CSE303 Au09 33




