11/16/2009

static

// example.c

int passcode = 12345; // public

static int admin_passcode = 67890; // private

. « static used on global variables and functions
static - Y .
— visible only to the current file/module (sort of like Java's

make private)

— declare things static if you do not want them exposed
avoids potential conflicts with multiple modules that happen
to declare global variables with the same names

passcode will be visible through the rest of example.c, but
not to any other modules/files compiled with example.c

David Notkin e Autumn 2009 ® CSE303 Lecture 21

CSE303 Au09 2
Function static data The compilation process
* When used inside a function « What happens when you compile a Java program?

static type name = value;

... declares a static local variable that will be
remembered across calls

int nextSquare() {

$ javac Example.java

- Example. java is compiled to create
Example.class

static int n = 0;

static int increment = 1; * But..
n += increment; — what if you compile it again?
increment += 2; — what if Example. java uses Point objects from
return n; Point. java?
} — what if Point. java is changed but not
+ nextSquare() returns i,then 4, then o, then 1s, ... recompiled, and then we try to recompile
ample. java?
CSE303Au09 3 Ex le.java®
Compiling large programs Dependencies
+ Compiling multi-file programs repeatedly is cumbersome « Dependency : When a file
$ gcc -g -Wall -o myprogram filel.c file2.c file3.c relies on the contents of
» Retyping the above command is wasteful another — can be displayed &
— for the developer (so much typing), and it’s error-prone asa dep.enden.cy graph projectl
— for the compiler (may not need to recompile all; save them - :]Oegg”g “1‘:3”;1'°' we /‘\
as .0) ata.h,
in.c,and io.h
+ Improvements main.c ro-f
history to re-t ilati di — if any of those files is daga.o maino ieo
- ;zﬁ up-arrow or history to re-type compilation command for updated, we must
rebuild main.o
— use an alias or shell script to recompile everything _ ifmain.o is updated,
— use a system for compilation/build management, such as we must update datac datah maine  doh  do.e
make projectl (whichis
probably an executable
like a.out)




11/16/2009

make

make : a utility for automatically compiling ("building")
executables and libraries from source code.

— avery basic compilation manager

— often used for C programs, but not language-specific

primitive, but still widely used due to familiarity, simplicity

— similar programs: ant, maven, IDEs (Eclipse), ...

makefile : A script file that defines rules for what must be
compiled and how to compile it.

— makefiles describe which files depend on which others, and
how to create / compile / build / update each file in the
system as needed.

— The basic idea is to compare file modification dates and to
rebuild any file A dependent on another file B that has
changed more recently than A

Makefile rule syntax

target: sourcel source2 ... sourceN
command
command

Example:

myprogram: filel.c file2.c file3.c
gcc -o myprogram filel.c file2.c file3.c

« The command line must be indented by a single tab
* not by spaces; NOT BY SPACES! SFACES

WILL NOU I WURNK!

Running make

$ make target
» uses the file named Makefile in current directory
+ finds rule in Makefile for building target
— ifthe target file does not exist, or if it is older than any of
its sources, its commands will be executed
* variations:
$ make
— builds the first target in the Makefile
$ make -f makefilename
$ make -f makefilename target
— uses a makefile other than Makefile

Rules with no sources

clean:
rm filel.o file2.o file3.o myprog

* make assumes that a rule's command will build or
create its target
— but if your rule does not actually create its target,
the target will still not exist the next time, so the
rule will always execute (clean above)
- make clean is a convention for removing all
compiled files (but not source or header files!)

Rules with no commands

all: myprog myprog2

myprog: filel.o file2.o file3.o
gcc -g -Wall -o myprog filel.o file2.o file3.o

myprog2: filed.c
gcc -g -Wall -o myprog2 filed.c

« all rule has no commands, but depends on myprog and
myprog2
- make all ensures that myprog, myprog2 are up to date
- all rule often put first, so that typing make will build
everything

Variables
NAME = value (declare)
$ (NAME) (use)

OBJFILES = filel.o file2.o file3.o
PROGRAM = myprog

$ (PROGRAM) : $ (OBJFILES)
gcc -g -Wall -o $(PROGRAM) $(OBJFILES)

clean:
rm $ (OBJFILES) $(PROGRAM)

« variables make it easier to change one option throughout the file
— also makes the makefile more reusable for another project




11/16/2009

More variables

OBJFILES = filel.o file2.o file3.o

PROGRAM = myprog

ifdef WINDIR # assume it's a Windows box
PROGRAM = myprog.exe

endif

CC = gcc

CCFLAGS = -g -Wall

$ (PROGRAM) : $ (OBJFILES)
$(CC) $(CCFLAGS) -o $(PROGRAM) $ (OBJFILES)

« variables can be conditional (ifdef above)
* many makefiles create variables for the compiler, flags, etc.
— this can be overkill, but you will see it "out there"

Special variables include

$@ the current target file
$~ all sources listed for the current target
$< the first (left-most) source for the current target

myprog: filel.o file2.o file3.o
gcc $ (CCFLAGS) -o $@ $*

filel.o: filel.c filel.h file2.h
gce $ (CCFLAGS) -c $<

Auto-conversions

+ Rather than specifying individually how to convert every .c file
into its corresponding .o file, you can set up an implicit target:

# conversion from .c to .o
.c.o:
gcc $(CCFLAGS) -c $<

— "To create filename.o from filename.c, run gcc -g -Wall -c
filename.c”
+ For making an executable (no extension), simply write .c :
.c:
gcc $(CCFLAGS) -o $@ $<

+ Related rule: .SUFFIXES (what extensions can be used)

Dependency generation

« You can make gcc figure out dependencies for you:
$ gcc -M filename
— instead of compiling, outputs a list of
dependencies for the given file
$ gcc -MM filename
— similar to -M, but omits any internal system
libraries (preferred)

« Example:
$ gcc -MM linkedlist.c
linkedlist.o: linkedlist.c linkedlist.h util.h

« related command: makedepend

Midterm grades vs. initial experience

+ Unix experience 30%
25%
- 49% None 20%
- 3% Alittle 15%
)0,
- 11% Quite a bit 0%
- 3% Pays my tuition 0%
+ C/C++ experience
- 52% None
- 3% Alittle =None ®Alitle = Quite a bit
- 9% Quite a bit
- 2% Pays my tuition « This is a histogram of midterm scores
« The bars are the % of people who self-
Mean/Median described as having “none”, “a little” or
None 76/75 “quite a bit” of Unix/C/C++ experience
Alittle 81/80 « Each color s‘f‘mu‘l‘d tolval 100%
- - «  “Pays my tuition” omitted because of
Quite a bit 85/83 the small numbers

CSE303Au09 17

Questions?

CSE303Au09 18




