
11/16/2009

1

David Notkin  Autumn 2009  CSE303 Lecture 21

static

make

static

// example.c

int passcode = 12345; // public

static int admin_passcode = 67890; // private

• static used on global variables and functions

– visible only to the current file/module (sort of like Java's
private)

– declare things static if you do not want them exposed

– avoids potential conflicts with multiple modules that happen

to declare global variables with the same names

– passcode will be visible through the rest of example.c, but

not to any other modules/files compiled with example.c

CSE303 Au09 2

Function static data

• When used inside a function
static type name = value;

… declares a static local variable that will be

remembered across calls
int nextSquare() {

static int n = 0;

static int increment = 1;

n += increment;

increment += 2;

return n;

}

• nextSquare() returns 1, then 4, then 9, then 16, ...

CSE303 Au09 3

The compilation process

• What happens when you compile a Java program?

$ javac Example.java

– Example.java is compiled to create

Example.class

• But...

– what if you compile it again?

– what if Example.java uses Point objects from

Point.java?

– what if Point.java is changed but not

recompiled, and then we try to recompile
Example.java?

Compiling large programs

• Compiling multi-file programs repeatedly is cumbersome
$ gcc -g -Wall -o myprogram file1.c file2.c file3.c

• Retyping the above command is wasteful

– for the developer (so much typing), and it’s error-prone

– for the compiler (may not need to recompile all; save them

as .o)

• Improvements

– use up-arrow or history to re-type compilation command for

you

– use an alias or shell script to recompile everything

– use a system for compilation/build management, such as

make

Dependencies

• Dependency : When a file

relies on the contents of

another – can be displayed

as a dependency graph

– to build main.o, we

need data.h,

main.c, and io.h

– if any of those files is

updated, we must
rebuild main.o

– if main.o is updated,

we must update
project1 (which is

probably an executable
like a.out)

11/16/2009

2

make

• make : a utility for automatically compiling ("building")

executables and libraries from source code.

– a very basic compilation manager

– often used for C programs, but not language-specific

– primitive, but still widely used due to familiarity, simplicity

– similar programs: ant, maven, IDEs (Eclipse), ...

• makefile : A script file that defines rules for what must be

compiled and how to compile it.

– makefiles describe which files depend on which others, and

how to create / compile / build / update each file in the

system as needed.

– The basic idea is to compare file modification dates and to

rebuild any file A dependent on another file B that has

changed more recently than A

Makefile rule syntax

target: source1 source2 ... sourceN

command

command

...

Example:
myprogram: file1.c file2.c file3.c

gcc -o myprogram file1.c file2.c file3.c

• The command line must be indented by a single tab

• not by spaces; NOT BY SPACES!

Running make

$ make target

• uses the file named Makefile in current directory

• finds rule in Makefile for building target

– if the target file does not exist, or if it is older than any of

its sources, its commands will be executed

• variations:

$ make

– builds the first target in the Makefile

$ make -f makefilename

$ make -f makefilename target

– uses a makefile other than Makefile

Rules with no sources

clean:

rm file1.o file2.o file3.o myprog

• make assumes that a rule's command will build or

create its target

– but if your rule does not actually create its target,

the target will still not exist the next time, so the
rule will always execute (clean above)

– make clean is a convention for removing all

compiled files (but not source or header files!)

Rules with no commands

all: myprog myprog2

myprog: file1.o file2.o file3.o

gcc -g -Wall -o myprog file1.o file2.o file3.o

myprog2: file4.c

gcc -g -Wall -o myprog2 file4.c

...

• all rule has no commands, but depends on myprog and

myprog2

– make all ensures that myprog, myprog2 are up to date

– all rule often put first, so that typing make will build

everything

Variables

NAME = value (declare)

$(NAME) (use)

OBJFILES = file1.o file2.o file3.o

PROGRAM = myprog

$(PROGRAM): $(OBJFILES)

gcc -g -Wall -o $(PROGRAM) $(OBJFILES)

clean:

rm $(OBJFILES) $(PROGRAM)

• variables make it easier to change one option throughout the file

– also makes the makefile more reusable for another project

11/16/2009

3

More variables

OBJFILES = file1.o file2.o file3.o

PROGRAM = myprog

ifdef WINDIR # assume it's a Windows box

PROGRAM = myprog.exe

endif

CC = gcc

CCFLAGS = -g -Wall

$(PROGRAM): $(OBJFILES)

$(CC) $(CCFLAGS) -o $(PROGRAM) $(OBJFILES)

• variables can be conditional (ifdef above)

• many makefiles create variables for the compiler, flags, etc.

– this can be overkill, but you will see it "out there"

Special variables include

$@ the current target file

$^ all sources listed for the current target

$< the first (left-most) source for the current target

myprog: file1.o file2.o file3.o

gcc $(CCFLAGS) -o $@ $^

file1.o: file1.c file1.h file2.h

gcc $(CCFLAGS) -c $<

Auto-conversions

• Rather than specifying individually how to convert every .c file

into its corresponding .o file, you can set up an implicit target:

conversion from .c to .o

.c.o:

gcc $(CCFLAGS) -c $<

– "To create filename.o from filename.c, run gcc -g -Wall -c

filename.c"

• For making an executable (no extension), simply write .c :

.c:

gcc $(CCFLAGS) -o $@ $<

• Related rule: .SUFFIXES (what extensions can be used)

Dependency generation

• You can make gcc figure out dependencies for you:

$ gcc -M filename

– instead of compiling, outputs a list of

dependencies for the given file

$ gcc -MM filename

– similar to -M, but omits any internal system

libraries (preferred)

• Example:
$ gcc -MM linkedlist.c

linkedlist.o: linkedlist.c linkedlist.h util.h

• related command: makedepend

Midterm grades vs. initial experience

• Unix experience

– 49% None

– 37% A little

– 11% Quite a bit

– 3% Pays my tuition

• C/C++ experience

– 52% None

– 37% A little

– 9% Quite a bit

– 2% Pays my tuition

CSE303 Au09 17

0%
5%

10%
15%
20%
25%
30%

None A little Quite a bit

• This is a histogram of midterm scores

• The bars are the % of people who self-

described as having “none”, “a little” or

“quite a bit” of Unix/C/C++ experience

• Each color should total 100%

• “Pays my tuition” omitted because of

the small numbers

Mean/Median

None 76/75

A little 81/80

Quite a bit 85/83

Questions?

CSE303 Au09 18

