
11/6/2009

1

David Notkin Autumn 2009 CSE303 Lecture 17

#preprocessor

Debugging is twice as hard as writing the code

in the first place. Therefore, if you write the

code as cleverly as possible, you are, by

definition, not smart enough to debug it.

--Brian W. Kernighan

Type char

• char : A primitive type representing single characters

– literal char values have apostrophes: 'a' or

'4' or '\n' or '\''

• you can compare char values with relational

operators

– 'a' < 'b' and 'X' == 'X' and

'Q' != 'q'

• What does this example do?

for (char c = 'a'; c <= 'z'; c++) {

printf(“%c”,c);

}

char and int

• chars are stored as integers internally (ASCII

encoding)
'A' 65 'B' 66 ' ' 32 '\0„ 0

'a' 97 'b' 98 '*' 42 '\n' 10

char letter = 'S';

printf("%d", letter); // 83

• mixing char and int causes automatic conversion to int

– 'a' + 2 is 99, 'A' + 'A' is 130

– to convert an int into the equivalent char, type-cast it --

(char) ('a' + 2) is 'c'

Strings

• in C, strings are just arrays of characters (or pointers

to char)

• the following code works in C – why?
char greet[7] = {'H', 'i', ' ', 'y', 'o', 'u'};

printf(greet); // output: Hi you

• the following versions also work and are equivalent:

char greet[7] = "Hi you";

char greet[] = "Hi you";

• Why does the array have 7 elements?

Null-terminated strings

• in C, strings are null-terminated (end with a 0 byte, aka '\0')

• string literals are put into the "code" memory segment

– technically "hello" is a value of type const char*

char greet[7] = {'H', 'i', ' ', 'y', 'o', 'u'};
char* seeya = "Goodbye";

greet

seeya

index 0 1 2 3 4 5 6

char 'H' 'i' ' ' 'y' 'o' 'u' '\0'

index 0 1 2 3 4 5 6 7

char 'G' 'o' 'o' 'd' 'b' 'y' 'e' '\0'

(stack)

(heap)

String input/output

char greet[7] = {'H', 'i', ' ', 'y', 'o', 'u'};

printf("Oh %8s!", greet); // output: Oh hi you!

char buffer[80] = {'\0'}; // input

scanf("%s", buffer);

• scanf reads one word at a time into an array (note the lack of

&)

– if user types more than 80 chars, will go past end of buffer (!)

• other console input functions:

– gets(char*) reads an entire line of input into the given

array

– getchar() reads and returns one character of input

11/6/2009

2

Looping over chars

• don't need charAt as in Java; just use [] to

access characters

int i;

int s_count = 0;

char str[] = "Mississippi";

for (i = 0; i < 11; i++) {

printf("%c\n", str[i]);

if (str[i] == 's') {

s_count++;

}

}

printf("%d occurrences of letter s\n", s_count);

String literals

• when you create a string literal with "text", really it is just a
const char* (unchangeable pointer) to a string in the code

area

// pointer to const string literal

char* str1 = "str1"; // ok

str1[0] = 'X'; // not ok

// stack-allocated string buffer

char str2[] = "str2"; // ok

str2[0] = 'X'; // ok

// but pointer can be reassigned

str1 = "new"; // ok

str2 = "new"; // not ok

main

str1

str2

available

heap

global data

code

s t r 1 \0

s t r 2 \0

n e w \0

Pointer arithmetic

• +/- n from a pointer shifts the address by n times the size of the

type being pointed to

– Ex: Adding 1 to a char* shifts it ahead by 1 byte

– Ex: Adding 1 to an int* shifts it ahead by 4 bytes

char[] s1 = "HAL";

char* s2 = s1 + 1; // points to 'A'

int a1[3] = {10, 20, 30, 40, 50};

int* a2 = a1 + 2; // points to 30

a2++; // points to 40

for (s2 = s1; *s2; s2++) {

*s2++; // what does this do?

} // really weird!

How about this one?

char* s1 = "HAL";

char* s2;

for (s2 = s1; *s2; s2++) {

printf("%c\n",(char)((*s2)+1));

};

CSE303 Au09 10

Strings as user input

char buffer[80] = {0};

scanf("%s", buffer);

• reads one word (not line) from console, stores into buffer

• problem : might go over the end of the buffer

– fix: specify a maximum length in format string placeholder

– scanf("%79s", buffer); // why 79?

• if you want a whole line, use gets instead

• if you want just one character, use getchar (reads \n

explicitly)

String library functions

• #include <string.h>

function description

int strlen(s) returns length of string s until \0

strcpy(dst, src) copies string characters from src into dst

char* strdup(s) allocates and returns a copy of s

strcat(s1, s2) concatenates s2 onto the end of s1 (puts \0)

int strcmp(s1, s2) returns < 0 if s1 comes before s2 in ABC order;
returns > 0 if s1 comes after s2 in ABC order;
returns 0 if s1 and s2 are the same

int strchr(s, c) returns index of first occurrence of c in s

int strstr(s1, s2) returns index of first occurrence of s2 in s1

char* strtok(s, delim) breaks apart s into tokens by delimiter delim
strncpy, strncat, strncmp length-limited versions of above functions

11/6/2009

3

Comparing strings

• relational operators (==, !=, <, >, <=, >=) do not work on

strings

char* str1 = "hello";

char* str2 = "hello";

if (str1 == str2) { // no

• instead, use strcmp library function (0 result means equal)

char* str1 = "hello";

char* str2 = "hello";

if (!strcmp(str1, str2)) {

// then the strings are equal

...

}

More library functions

• #include <ctype.h> (functions for chars)

– isalpha('A') returns a nonzero result (true)

function description

int atoi(s) converts string (ASCII) to integer

double atof(s) converts string to floating-point

sprintf(s, format, params) writes formatted text into s

sscanf(s, format, params) reads formatted tokens from s

function description

int isalnum(c),

isalpha, isblank, isdigit,

islower, isprint, ispunct,

isspace, isupper, isxdigit,

tolower, toupper

tests info about a single character

Copying a string

• copying a string into a stack buffer:
char* str1 = "Please copy me";

char str2[80]; // must be >= strlen(str1) + 1

strcpy(str2, str1);

• copying a string into a heap buffer:
char* str1 = "Please copy me";

char* str2 = strdup(str1);

• do it yourself (hideous, yet beautiful):
char* str1 = "Please copy me";

char str2[80];

while (*s2++ = *s1++); // why does this work?

Midterm A

• Suppose you have a shell script named abc and you

execute

$./abc > /dev/null

Since standard output is redirected to /dev/null there

is no output sent to the console. Does this always,

never, or sometimes have the same effect as simply

not executing the script? Briefly explain.

CSE303 Au09 16

Midterm B

Consider the following commands and output in the

shell:

$ grep grep grep

grep: grep: No such file or directory

$ grep

Usage: grep [OPTION]... PATTERN [FILE]...

Try `grep --help' for more information.

If you instead enter

$ grep grep

what happens? Be precise.

CSE303 Au09 17

Midterm C

•Consider the following command

grep -E "(/*([^*]|(*+[^*/]))**+/)|(//.*)" *.c

•It is intended to search C programs for lines that

include comments. The part of the regular expression

before the underlined part matches *, the part

immediately after matches one or more * followed by a

/, and the last part matches comments starting with //.

Concisely explain what the underlined part of the

regular expression matches.

CSE303 Au09 18

11/6/2009

4

Midterm D

1) Write a shell script double that accepts a single argument. The script

must execute the command named by the argument and pass this

command the original argument. For example, if you execute

$./double man

it will execute the man command with man as an argument…

2) What will this do?

$./double echo

3) What will this do?

$./double ./double

CSE303 Au09 19

Midterm E

#include <stdio.h>

int main (int argc,char *argv[]) {

int init,i,j,k;

int data[10][10][10];

init = atoi(argv[1]);

init = scanf("%d",&init);

for (i=0;i<=10;i++) {

for (k=0;k<=10;k++) {

for (j=0;j<=10;j++) {

data[i][j][k] = init*i*j*k;

printf("%d %d %d %d %d\n",

init,i,j,k,data[i][j][k]);

};

};

};

}

CSE303 Au09 20

Midterm F

• A Unix process can have more virtual memory than

there is physical memory on the machine it runs on.

• We think of [the output from digits.c] as data. Is it

imaginable to consider this as a program in a

programming language called (for example) CSE303-

weird?

CSE303 Au09 21

Questions?

CSE303 Au09 22

