
10/28/2009

1

David Notkin  Autumn 2009  CSE303 Lecture 13

This space for rent

Upcoming schedule

CSE303 Au09 2

Today

10/23

Monday

10/26

Wednesday

10/28

Friday

10/30

Monday

11/2

Finish-up Wednesday

Some specifics for HW3

Social implications Friday

Memory management Midterm

review

Midterm

• structured data

• struct, typedef

• structs as parameters/returns

• arrays of structs

• linked data structures

• stacks

• linked lists

free: releases memory

• free(pointer);

• Releases the memory pointed to by the given pointer

– precondition: pointer must refer to a heap-

allocated memory block that has not already been

freed

– it is considered good practice to set a pointer to
NULL after freeing

int* a = (int*) calloc(8, sizeof(int));

...

free(a);

a = NULL;

Memory corruption

• If the pointer passed to free doesn't point to a heap-allocated

block, or if that block has already been freed, bad things happen

– you're lucky if it crashes, rather than silently corrupting

something

int* a1 = (int*) calloc(1000, sizeof(int));

int a2[1000];

int* a3;

int* a4 = NULL;

free(a1); // ok

free(a1); // bad (already freed)

free(a2); // bad (not heap allocated)

free(a3); // bad (not heap allocated)

free(a4); // bad (not heap allocated)

Structured data

• struct: A type that stores a collection of variables

– like a Java class, but with only fields (no methods or

constructors)

– instances can be allocated on the stack or on the heap

struct Point { // defines a new structured

int x, y; // type named Point

};

Using structs

• Once defined, a
struct instance

is declared just

like built-in types
(e.g., int, char)

except preceded
by struct

– this allocates an

instance on the

stack

– name fields of a
struct using the

. operator

struct Point {

int x, y;

};

int main(void) {

struct Point p1;

struct Point p2 = {42, 3};

p1.x = 15;

p1.y = -2;

printf("p1 is (%d, %d)\n",

p1.x, p1.y);

return 0;

}

10/28/2009

2

typedef

• Tell C to acknowledge your struct type's name with typedef

typedef struct Point {

int x, y;

} Point;

int main(void) {

Point p1; // don't need to write 'struct'

p1.x = 15;

p1.y = -2;

printf("p1 is (%d, %d)\n", p1.x, p1.y);

return 0;

}

Structs as parameters

• when you pass a struct as a parameter, it is copied

– not passed by reference as in Java

int main(void) {

Point p = {10, 20};

swapXY(p);

printf("(%d, %d)\n", p.x, p.y);

return 0; // prints (10, 20)

}

void swapXY(Point a) {

int temp = a.x;

a.x = a.y;

a.y = temp; // does not work

}

Pointers to structs

• structs can be passed using pointers

– must use parentheses when dereferencing a struct* (because

of operator precedence)

int main(void) {

Point p = {10, 20};

swapXY(&p);

printf("(%d, %d)\n", p.x, p.y);

return 0; // prints (20, 10)

}

void swapXY(Point* a) {

int temp = (*a).x;

(*a).x = (*a).y;

(*a).y = temp;

}

The -> operator

• We often allocate structs on the heap

– pointer->field is equivalent to (*pointer).field

int main(void) {

Point* p = (Point*) malloc(sizeof(Point));

p->x = 10;

p->y = 20;

swapXY(p);

printf("(%d, %d)\n", p->x, p->y); // (20, 10)

return 0;

}

void swapXY(Point* a) {

int temp = a->x;

a->x = a->y;

a->y = temp;

}

Copy by assignment

• One struct's entire contents can be copied to another with =

– struct2 = struct1; // copies the memory

int main(void) {

Point p1 = {10, 20}, p2 = {30, 40};

p1 = p2;

printf("(%d, %d)\n", p1.x, p1.y); // (30, 40)

// is this the same as p1 = p2; above?

Point* p3 = (Point*) malloc(sizeof(Point));

Point* p4 = (Point*) malloc(sizeof(Point));

p3->x = 70;

p3->y = 80;

p3 = p4;

printf("(%d, %d)\n", p3->x, p3->y);

}

Struct as return value

• We generally pass/return structs as pointers

– takes less memory (and time) than copying

– if a struct is malloc-ed and returned as a pointer, who frees it?

int main(void) {

Point* p1 = new_Point(10, 20);

...

free(p1);

}

// creates/returns a Point; sort of a constructor

Point* new_Point(int x, int y) {

Point* p = (Point*) malloc(sizeof(Point));

p->x = x;

p->y = y;

return p; // caller must free p later

}

10/28/2009

3

Comparing structs

• relational operators (==, !=, <, >, <=, >=)

don't work with structs

Point p1 = {10, 20};

Point p2 = {10, 20};

if (p1 == p2) { ... // error

• what about this?

Point* p1 = new_Point(10, 20);

Point* p2 = new_Point(10, 20);

if (p1 == p2) { ... // true or false?

Comparing structs, cont'd

• the right way to compare two structs: write your own

#include <stdbool.h>

bool point_equals(Point* a, Point* b) {

if (a->x == b->x && a->y == b->y) {

return true;

} else {

return false;

}

}

int main(void) {

Point p1 = {10, 20};

Point p2 = {10, 20};

if (point_equals(&p1, &p2)) { ...

Structs and input

• you can create a pointer to a field of a struct

– structs' members can be used as the target of a scanf,

etc.

int main(void) {

Point p;

printf("Please type your x/y position: ");

scanf("%d %d", &p.x, &p.y);

}

int main(void) {

Point* p = (Point*) malloc(sizeof(Point));

printf("Please type your x/y position: ");

scanf("%d %d", &p->x, &p->y);

}

Arrays of structs

• parallel arrays are conceptually linked by their index

– parallel arrays are usually bad design; isn't clear that they are

related

– you should often replace such arrays with an array of structs

int id[50]; // parallel arrays to store

int year[50]; // student data (bad)

double gpa[50];

typedef struct Student {

int id, year;

double gpa;

} Student;

Student students[50];

Structs with pointers

• What if we want a Student to store a significant other?

typedef struct Student { // incorrect .. Why?

int id, year;

double gpa;

struct Student sigother;

} Student;

• When to stop the recursion?

– a Student cannot fit another entire Student inside of it!

Alternative

typedef struct Student { // correct

int id, year;

double gpa;

struct Student* sigother;

} Student;

CSE303 Au09 18

10/28/2009

4

Linked data structures

• C does not include collections like Java's ArrayList, HashMap

– must build any needed data structures manually

– to build a linked list structure, create a chain of

structs/pointers

typedef struct Node {

int data;

struct Node* next;

} Node;

Node* front = ...;

data next

10

data next

990 NULL
front

...

data next

20

Manipulating a linked list

• there is only a node type (struct), no overall list class

• list methods become functions that accept a front node pointer:

int list_length(Node* front) {

Node* current = front;

int count = 0;

while (current != NULL) {

count++;

current = current->next;

}

return count;

}

data next

10

data next

30 NULL
front

data next

20

Exercise

• Write a complete C program that allows the user to

create a basic stack of ints. The user should be able

to:

– push : put a new int onto the top of the stack.

– pop : remove the top int from the stack and

print it.

– clear : remove all ints from the stack.

• Do not make any assumptions about the size of the

stack.

– Do not allow any memory leaks in your program.

Questions?

CSE303 Au09 22

