
10/26/2009

1

David Notkin Autumn 2009 CSE303 Lecture 12

October 24, 2009: 350.org @ Space Needle

Upcoming schedule

CSE303 Au09 2

Today

10/23

Monday

10/26

Wednesday

10/28

Friday

10/30

Monday

11/2

Finish-up Wednesday

Some specifics for HW3

Social implications Friday

Memory management Midterm

review

Midterm

• Swap

• Arrays as parameters and returns

• Arrays vs. pointers

• The heap

• Dynamic memory allocation (malloc, calloc, free)

• Memory leaks and corruption

CSE303 Au09 3

#include <stdio.h>

int main(int argc, char *argv[]) {

int a,b;

scanf("%d %d",&a,&b); printf("Before swap: a=%d b=%d\n",a,b);

swap(a,b); printf("After return from swap: a=%d b=%d\n",a,b);

swap2(&a,&b); printf("After return from swap2: a=%d b=%d\n",a,b);

}

swap(int x,int y) {

int t;

t = x; x = y; y = t;

printf("Before return from swap: x=%d y=%d\n",x,y);

}

swap2(int *f,int *g) {

int t;

t = *f; *f = *g; *g = t;

printf("Before return from swap2: f=%d g=%d\n",*f,*g);

}

swap2 (after

assignments)

g

f

t 6

swap2 (before

assignments)

g

f

t ?

swap (before

assignments)

y 5

x 6

t ?

swap (after

assignments)

y 6

x 5

t 6

main (before

swap call)

b 5

a 6

main (between

swap/swap2 call)

b 5

a 6

main (after swap2

assignments)

b 6

a 5

main (after swap2

return)

b 6

a 5

Arrays and pointers

• A pointer can point to

an array element

• An array's name can

be used as a pointer

to its first element

• The[] notation treats

a pointer like an array

– pointer[i] is i

elements' worth of

bytes forward from

pointer

int a[5] = {10, 20, 30, 40, 50};

int* p1 = &a[3]; // a's 4th element

int* p2 = &a[0]; // a's 1st element

int* p3 = a; // a's 1st element

*p1 = 100;

*p2 = 200;

p1[1] = 300;

p2[1] = 400;

p3[2] = 500;

Final array contents:

{200, 400, 500, 100, 300}

“pointer[i] is i elements' worth of bytes” –

what is an “elements’ worth”?

int x;

int a[5];

printf("int=%d,double=%d\n",

sizeof(int),

sizeof(double));

printf("x uses %d bytes\n",

sizeof(x));

printf("a uses %d bytes\n",

sizeof(a));

printf("a[0] uses %d bytes\n",

sizeof(a[0]));

int=4, double=8
x uses 4 bytes
a uses 20 bytes
a[0] uses 4 bytes

• sizeof(type) or

sizeof(variable)

returns memory size in bytes

• Arrays passed as

parameters do not remember

their size

int a[5];
printf("a uses %d bytes\n",

sizeof(a));
f(a);

void f(int a[]) {
printf("a uses %2d
bytes in f\n",
sizeof(a));

}

a uses 20 bytes
a uses 4 bytes in f

CSE303 Au09 6

10/26/2009

2

Arrays as parameters

• Array parameters are passed as pointers to the first element; the

[] syntax on parameters is only a convenience – the two

programs below are equivalent

void f(int a[]);

int main(void) {

int a[5];

...

f(a);

return 0;

}

void f(int a[]) {

...

}

void f(int* a);

int main(void) {

int a[5];

...

f(&a[0]);

return 0;

}

void f(int* a) {

...

}

Returning an array

• Stack-allocated variables disappear at the end of the function:

this means an array cannot generally be safely returned from a

method

int main(void) {

int nums[4] = {7, 4, 3, 5};

int nums2[4] = copy(nums, 4); // no

return 0;

}

int[] copy(int a[], int size) {

int i;

int a2[size];

for (i = 0; i < size; i++) {

a2[i] = a[i];

}

return a2; // no

}

Pointers (alone) don't help

• A dangling pointer points to an invalid memory location

int main(void) {

int nums[4] = {7, 4, 3, 5};

int* nums2 = copy(nums, 4);

// nums2 dangling here

...

}

int* copy(int a[], int size) {

int i;

int a2[size];

for (i = 0; i < size; i++) {

a2[i] = a[i];

}

return a2;

}

Our conundrum

• We'd like to have C programs with data that are

– Dynamic (size of array changes based on user

input, etc.)

– Long-lived (doesn't disappear after the function is

over)

– Bigger (the stack can't hold all that much data)

• Currently, our solutions include:

– Declaring variables in main and passing as "output

parameters"

– Declaring global variables (do not want)

The heap

• The heap (or "free store") is a large pool of unused memory

that you can use for dynamically allocating data

• It is allocated/deallocated explicitly, not (like the stack) on

function calls/returns

• Many languages (e.g. Java) place

all arrays/ objects on the heap

// Java

int[] a = new int[5];

Point p = new Point(8, 2);

malloc: allocating heap memory

• variable = (type*) malloc(size);

• malloc function allocates a heap memory block of a given size

– returns a pointer to the first byte of that memory

– can/should cast the returned pointer to the appropriate type

– initially the memory contains garbage data

– often used with sizeof to allocate memory for a given data

type

int* a = (int*) malloc(8 * sizeof(int));

a[0] = 10;

a[1] = 20;

...

10/26/2009

3

calloc: allocate and zero

• variable = (type*) calloc(count, size);

• calloc function is like malloc, but it zeros out the

memory

– also takes two parameters, number of elements

and size of each

– preferred over malloc for avoiding bugs (but

slightly slower)

#include <stdlib.h>

// int a[8] = {0}; <-- stack equivalent

int* a = (int*) calloc(8, sizeof(int));

Returning a heap array

• To return an array, malloc it and return a pointer

– Array will live on after the function returns

int main(void) {

int nums[4] = {7, 4, 3, 5};

int* nums2 = copy(nums, 4); ...

int* copy(int a[], int size) {

int i;

int* a2 = malloc(size * sizeof(int));

for (i = 0; i < size; i++) {

a2[i] = a[i];

}

return a2;

}

NULL: an invalid memory location

• In C, NULL is a global constant whose value is 0

• If you malloc/calloc but have no memory free, it returns
NULL

• You can initialize a pointer to NULL if it has no meaningful value

• Dereferencing a null pointer will crash your program

int* p = NULL;

*p = 42; // segfault

• Exercise : Write a program that figures out how large the stack

and heap are for a default C program.

Deallocating memory

• Heap memory stays allocated until the end of your program

• A garbage collector is a process that automatically reclaims

memory no longer in use

– Keeps track of which variables point to which memory, etc.

– Used in Java and many other modern languages; not in C

// Java

public static int[] f() {

int[] a = new int[1000];

int[] a2 = new int[1000];

return a2;

} // no variables refer to a here; can be freed

Memory leaks

• A memory leak is a failure to release memory when

no longer needed.

– easy to do in C

– can be a problem if your program will run for a

long time

– when your program exits, all of its memory is

returned to the OS

void f(void) {

int* a = (int*) calloc(1000, sizeof(int));

...

} // oops; the memory for a is now lost

free: releases memory

• free(pointer);

• Releases the memory pointed to by the given pointer

– precondition: pointer must refer to a heap-

allocated memory block that has not already been

freed

– it is considered good practice to set a pointer to
NULL after freeing

int* a = (int*) calloc(8, sizeof(int));

...

free(a);

a = NULL;

10/26/2009

4

Memory corruption

• If the pointer passed to free doesn't point to a heap-allocated

block, or if that block has already been freed, bad things happen

– you're lucky if it crashes, rather than silently corrupting

something

int* a1 = (int*) calloc(1000, sizeof(int));

int a2[1000];

int* a3;

int* a4 = NULL;

free(a1); // ok

free(a1); // bad (already freed)

free(a2); // bad (not heap allocated)

free(a3); // bad (not heap allocated)

free(a4); // bad (not heap allocated)

Questions?

CSE303 Au09 20

