
11/13/2009

1

David Notkin  Autumn 2009  CSE303 Lecture 20

Multi-file (larger) programs

Friday: social implications

Motivation

• Single-file programs do not work well when code gets

large

– compilation can be slow

– hard to collaborate between multiple programmers

– more cumbersome to edit

• So, larger programs are split into multiple files

– each file represents a partial program or module

– modules can be compiled separately or together

– a module can be shared between multiple

programs

CSE303 Au09 2

Partial programs

• A .c file can contain a partial program:

#include <stdio.h>

void f1(void) { // part1.c

printf("this is f1\n");

}

• Such a file cannot be compiled into an executable by

itself:
$ gcc part1.c

/usr/lib/gcc/crt1.o: In function `_start':

(.text+0x18): undefined reference to `main'

collect2: ld returned 1 exit status

CSE303 Au09 3

But part2.c wants to use part1.c‘s code?

#include <stdio.h>

void f2(void); // part2.c

int main(void) {

f1(); // not defined!

f2();

}

void f2(void) {

printf("this is f2\n");

}

• The program will not compile
– $ gcc -o combined part2.c

– In function `main':

– part2.c:6: undefined reference to `f1'

CSE303 Au09 4

Including .c files (bad)

• One solution: #include part1.c in part2.c

#include <stdio.h>

#include "part1.c" // note "" not <>

void f2(void);

int main(void) {

f1(); // defined in part1.c

f2();

}

void f2(void) {

printf("this is f2\n");

}

• The program will compile successfully:

$ gcc -g -Wall -o combined part2.c

CSE303 Au09 5

Multi-file compilation

#include <stdio.h>

void f2(void); // part2.c

int main(void) {

f1(); // not defined?

f2();

}

void f2(void) {

printf("this is f2\n");

}

• gcc accepts multiple source files to combine

$ gcc -g -Wall -o combined part1.c part2.c

$./combined

this is f1

this is f2
CSE303 Au09 6

11/13/2009

2

Object (.o) files

• A partial program can be compiled into an object (.o)

file with -c

$ gcc -g -Wall -c part1.c

$ ls

part1.c part1.o part2.c

• A .o file is a binary blob of compiled C code that

cannot be directly executed, but can be directly

inserted into a larger executable later

• You can compile a mixture of .c and .o files

$ gcc -g -Wall -o combined part1.o part2.

• Avoids recompilation of unchanged partial program

files

CSE303 Au09 7

The compilation process

• Each step's output can be dumped to a file,
depending on arguments passed to gcc

CSE303 Au09 8

Problem

• With the previous code, we can't safely create part2.o

$ gcc -g -Wall -c part2.c

part2.c: In function `main':

part2.c:6: warning: implicit declaration of

function `f1‘

• The compiler is complaining because f1 does not exist.

– But it will exist once part1.c/o is added in later

• We'd like a way to be able to declare to the compiler that certain

things will be defined later in the compilation process...

CSE303 Au09 9

Header files

• Header : A file whose only purpose is to be included

– By convention a filename with the .h extension

– Holds shared variables, types, and function declarations

• Key ideas:

– every name.c intended to be a module has a name.h

– name.h declares all global functions/data of the module

– other .c files that want to use the module will #include

name.h

• Some conventions:

– .c files never contain global function prototypes

– .h files never contain definitions (only declarations)

– never #include a .c file (only .h files)

– any file with a .h file should be able to be built into a .o file

CSE303 Au09 10

Multiple inclusion

• If multiple modules include the same header, the

variables/functions in it will be declared twice

• Solution : use preprocessor to introduce conditional compilation

– convention: #ifndef/#define with a variable named like

the .h file

– first time file is included, the variable won't be defined

– on inclusions by other modules, will be defined and thus not

included again

#ifndef _FOO_H

#define _FOO_H

... // contents of foo.h

#endif

CSE303 Au09 11

Global visibility

// example.c

int passcode = 12345;

// example2.c

int main(void) {

printf("Password is %d\n", passcode);

return 0;

}

• By default, global variables and functions defined in one module

can be seen and used by other modules it is compiled with

– problem : gcc compiles each file individually before linking

them

– if example2.c is compiled separately into a .o file, its

reference to passcode will fail as being undeclared

CSE303 Au09 12

11/13/2009

3

extern

// example2.c

extern int passcode;

...

printf("Password is %d\n", passcode);

• extern used on variables and functions

– does not actually define a variable/function or allocate space

for it – but promises the compiler that some other module will

define it

– allows your module to compile even with an undeclared
variable/function reference, so long as eventually its .o

object is linked to some other module that declares that

variable/function

• if example.c and example2.c are linked together, the

above will work
CSE303 Au09 13

static

// example.c

int passcode = 12345; // public

static int admin_passcode = 67890; // private

• static used on global variables and functions

– visible only to the current file/module (sort of like Java's
private)

– declare things static if you do not want them exposed

– avoids potential conflicts with multiple modules that happen

to declare global variables with the same names

– passcode will be visible through the rest of example.c, but

not to any other modules/files compiled with example.c

CSE303 Au09 14

Function static data

• When used inside a function
static type name = value;

… declares a static local variable that will be

remembered across calls
int nextSquare() {

static int n = 0;

static int increment = 1;

n += increment;

increment += 2;

return n;

}

• nextSquare() returns 1, then 4, then 9, then 16, ...

CSE303 Au09 15

Risks

• File share leaks data on US Congress members under

investigation

• Jeremy Epstein <jeremy.j.epstein@gmail.com> Fri, 30 Oct 2009

13:54:08 -0400 The Washington Post's Oct 30 lead article notes that

"more than 30 lawmakers and several aides" are under investigation for

various possible misdeeds associated with "defense lobbying and

corporate influence peddling". What's technology relevant is that the

information leaked because a report was (presumably accidentally)

placed on an unprotected computer (not clear whether it was a web

site, a file share, or something else). No word on whether the problem

was a misconfiguration (i.e., mis-set file permissions, whether

accidentally or intentionally) or due to a bug in software that allowed

bypassing protections. No indication that the data was encrypted...

perhaps this is an opportunity for Congress to learn the need for more

usable security systems, including encryption, to reduce the RISK of

accidental sharing?

CSE303 Au09 16

Questions?

CSE303 Au09 17

