
10/19/2009

1

David Notkin Autumn 2009 CSE303 Lecture 9

Dictionary.com, "c," in The American Heritage® Abbreviations Dictionary, Third Edition. Source location: Houghton Mifflin Company, 2005.

http://dictionary.reference.com/browse/c. Available: http://dictionary.reference.com. Accessed: October 19, 2009.

Today

• Some C leftovers from Friday

• Primitive data types: integers, real numbers,

characters, Boolean

• Functions

• Arrays

• Strings (briefly)

CSE303 Au09 2

Mostly the same as Java

• Variables

– can be used without being initialized (!)

– must be declared at the start of a function or block

(changed in C99)

• for loops

– variable cannot be declared in the loop header

• if/else statements, while and do/while loops

– there is no boolean type (changed in C99)

– any type of value can be used as a test

– 0 means false, every other number means true

• Parameters / returns

– C has certain features for values vs. references ("pointers")

Very different from Java

• Strings

– very clunky to use in C; arrays of characters

– are not objects; do not contain methods (external string

functions)

• I/O to/from console and files

– no Scanner; must use input functions such as scanf

– console I/O different than file I/O

• Errors and exceptions

– C has no try/catch and does not represent errors as objects

– errors are usually returned as integer error codes from

functions

– crashes are mostly called "segmentation faults" and are not

of much direct utility in figuring out what is wrong

Also very different

• Arrays

– are just bare contiguous blocks of memory

– have no methods and do not know their own length (!)

• Objects

– C doesn't have them

– closest similar feature: struct (a set of fields; no methods)

• Memory management

– most memory that you consume, you must explicitly free

afterward

• API and provided libraries

– C doesn't have very many, compared to Java

– you must write many things yourself (even data structures)

printf continued

• A placeholder can specify the parameter's width or

precision:

– %8d an integer, 8 characters wide, right-aligned

– %-8d an integer, 8 characters wide, left-aligned

– %.4f a real number, 4 digits after decimal

– %6.2f a real number, 6 total characters wide, 2 after

decimal

• Examples:

int age = 45;

double gpa = 1.2345678;

printf("%8d %7.3f\n", age, gpa);

printf("%8.2f %.1f %10.5f", gpa, gpa, gpa);

http://dictionary.reference.com/browse/c
http://dictionary.reference.com/

10/19/2009

2

scanf

• scanf("format string", variables);

• uses same syntax for formatted strings,
placeholders as printf

• Must precede each variable with an & (address-of

operator)

int x;

int y;

printf("Type your x and y values: ");

scanf("%d %d", &x, &y);

function description

scanf reads formatted input from console

scanf continued

• scanf returns the number of values successfully

read: can be examined to see whether the reading

was successful

• if # of variables listed doesn't match # of format

placeholders

– too many variables: later ones ignored

– too few variables: program crashes!

Practice exercise [if you want]

• Write a C program that makes change:

– prompts the user for an amount of money

– reports the number of pennies, nickels, dimes,

quarters, and dollars

• Example

Amount of money? 17.93

Pennies : 2

Nickels : 1

Dimes : 1

Quarters: 3

Dollars : 17

Primitive numeric types

– integer types: char (1B), short (2B), int (4B), long (8B)

– real numbers: float (4B), double (8B)

– modifiers: short, long, signed, unsigned (non-negative)

type bytes range of values printf

char 1 0 to 255 %c

short int 2 -32,768 to 32,767 %hi

unsigned short int 2 0 to 65,535 %hu

int 4 -2,147,483,648 to 2,147,483,647 %d, %i

unsigned int 4 0 to 4,294,967,295 %u

long long int 8 -9e18 to 9e18 - 1 %lli

float 4 approx. 10-45 to 1038 %f

double 8 approx. 10-324 to 10308 %lf

long double 12 A lot! %Lf

const variables

• const type name = expression;

– declares a variable whose value cannot be

changed

• Example:
const double MAX_GPA = 4.0;

...

MAX_GPA = 4.5; // grade inflation! (error)

– The compiler will issue this warning:
warning: assignment of read-only variable

'MAX_GPA'

Boolean type

#include <stdbool.h>

...

bool b = false;

• C doesn't actually have a Boolean type (anything

can be a test)

• including stdbool.h gives a pseudo-Boolean type

bool (C99)

– false is really a macro alias for 0

– true is really a macro alias for 1

10/19/2009

3

Anything wrong here

if (x < y == true) {

...

}

bool b2 = x < 10;

CSE303 Au09 13

Quintessential C bug

int x;

printf("Please type your age: ");

scanf("%d", &x);

if (x = 18) {

printf("You can now vote!\n");

}

Defining a function

returnType name(type name, ..., type name) {

statements;

}

• Example

int sumTo(int max) {

int sum = 0;

int i;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

Problem: function ordering

• You cannot call a function that has not been declared (defined)

yet

int main(void) {

int sum = sumTo(100);

printf("The sum is %i\n", sum);

return 0;

}

// sumTo is not declared until here

int sumTo(int max) {

...

}

• Solution : Reverse the order of function definition, or ...

Array usage

• type name[size] = {value, value, ..., value};

– allocates an array and fills it with pre-defined

element values

– if fewer values are given than the size, the rest are

filled with 0

• name[index] = expression; // set an element

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

int allZeros[1000] = {0}; // 1000 zeros

Multi-dimensional arrays

• type name[rows][columns];

– creates a two-dimensional array of given sizes, full of

garbage data

• type name[rows][columns] = {{values}, ...,

{values}};

– allocates a 2D array and fills it with pre-defined element

values

int grid[10][10];

int matrix[3][5] = {

{10, 5, -3, 17, 82},

{ 9, 0, 0, 8, -7},

{32, 20, 1, 0, 14}

};

10/19/2009

4

Exercise

• Write a complete C program that outputs the first 16

Fibonacci numbers in reverse order, 8 numbers per

line, 6 spaces per number.

987 610 377 233 144 89 55 34

21 13 8 5 3 2 1 1

Arrays as parameters

• Arrays do not know their own size; they are just

memory chunks – harder than in Java

int sumAll(int a[]);

int main(void) {

int numbers[5] = {7, 4, 3, 15, 2};

int sum = sumAll(numbers);

return 0;

}

int sumAll(int a[]) {

int i, sum = 0;

for (i = 0; i < ... ???

}

Solution 1: declare size

• Declare a function with the array's exact size

int sumAll(int a[5]);

int main(void) {

int numbers[5] = {7, 4, 3, 15, 2};

int sum = sumAll(numbers);

return 0;

}

int sumAll(int a[5]) {

int i, sum = 0;

for (i = 0; i < 5; i++) {

sum += i;

}

return sum;

}

Solution 2: pass size

• Pass the array's size as a parameter

int sumAll(int a[], int size);

int main(void) {

int numbers[5] = {7, 4, 3, 15, 2};

int sum = sumAll(numbers, 5);

return 0;

}

int sumAll(int a[], int size) {

int i, sum = 0;

for (i = 0; i < size; i++) {

sum += i;

}

return sum;

}

Returning an array

• arrays (so far) disappear at the end of the function:

this means they cannot be safely returned
int[] copy(int a[], int size);

int main(void) {

int numbers[5] = {7, 4, 3, 15, 2};

int numbers2[5] = copy(numbers, 5); // no

return 0;

}

int[] copy(int a[], int size) {

int i;

int a2[size];

for (i = 0; i < size; i++) {

a2[i] = a[i];

}

return a2; // no

}

Solution: output parameter

• workaround: create the return array outside and pass

it in -- "output parameter" works because arrays are

passed by reference
void copy(int a[], int a2[], int size);

int main(void) {

int numbers[5] = {7, 4, 3, 15, 2};

int numbers2[5];

copy(numbers, numbers2, 5);

return 0;

}

void copy(int a[], int a2[], int size) {

int i;

for (i = 0; i < size; i++) {

a2[i] = a[i];

}

}

10/19/2009

5

A bit about strings (more soon)

• String literals are the same as in Java

– printf("Hello, world!\n");

– but there is not actually a String type in C; they
are just char[]

• Strings cannot be made, concatenated, or examined

as in Java:
String s = "hello"; // no

int answer = 42;

printf("The answer is " + answer); // no

int len = "hello".length(); // no

int printMessage(String s, int times) { ... // no

Exercise

• Modify the previous program to prompt the user twice for a

number and print that many Fibonacci numbers in reverse

order, 8 numbers per line, 6 spaces per number.

How many Fibonacci numbers? 16

987 610 377 233 144 89 55 34

21 13 8 5 3 2 1 1

How many Fibonacci numbers? 10

55 34 21 13 8 5 3 2

1 1

Questions?

CSE303 Au09 27

