
10/16/2009

1

David Notkin  Autumn 2009  CSE303 Lecture 8

Lecture summary

• History and characteristics of C

• Major C language features

– differences between C and Java

• basic console input and output (printf and scanf)

• Our learning objectives in C

– procedural programming

– deeper understanding of program compilation and 

execution

– learn details of memory management

– debugging skills

– software development strategies

History

• Created in 1972 by Dennis Ritchie of Bell Labs

to accompany the Unix operating system

– latest version standard: "C99" (1999)

• Designed for creating system software

(programs close to the OS that talk directly to hardware)

– Also designed to be hardware-independent (portable)

– C is also used to develop high-level applications

• Currently one of the top two most widely used language 

worldwide

• Based on ALGOL; has influenced the designs of many 

languages

– C++, Java, C#, Perl, Eiffel, Objective-C, Modula, Pascal, ...

Characteristics of C

• fairly similar basic syntax and semantics to Java

– if/else, for, while, int, double,  {} 

[] () ; +- */% ++

• Much smaller provided standard library than Java

• More low-level (more work for programmer, less for 

compiler)

• Procedural  (not object-oriented)

– C does not have objects as we know them

– verb(noun);  rather than  noun.verb();

• More unsafe (an incorrect program can cause more 

damage): C programs have more direct access to the 

system / hardware

First C program

#include <stdio.h>

int main(void) {

printf("Hello, world!\n");

return 0;

}

• Kernighan and Ritchie started the convention that the 

first program you show in a new language should be 

one that prints "Hello, world!"

Dissecting Hello World

#include <stdio.h>

int main(void) {

printf("Hello, world!\n");

return 0;

}

like import in Java;

links the program to

the standard I/O library

(includes printf function)

the main function header;

you don't need to say public static

because these are the default in C

main returns an int error code to the OS

(0 on success, > 0 on failure)like println in Java (actually more 

like System.out.printf);

prints output to console



10/16/2009

2

Second C program

/* Computes greatest common divisor (GCD) with Euclid's algorithm. */

#include <stdio.h>

int main(int argc, char** argv) {

int a, b, temp, r;

printf("Please enter two positive integers: ");

scanf("%d %d", &a, &b);

if (b > a) {

temp = a;

a = b;

b = temp;

}

while ((r = a % b) != 0) {

a = b;

b = r;

}

printf("The GCD is %d.\n", b);

return 0;

}

Compiling/running

• To compile a program

– gcc -o target source.c

– target is the name of the executable program to 

build

• The compiler builds an actual executable file, not a 
.class like Java

– example: gcc -o hi hello.c

• To run your program, just execute that file

– example: ./hi

command description

gcc GNU C compiler

gcc options (partial)

• Most common usage for this course:

– gcc -g -Wall -o target source.c

– the warnings from -Wall will protect us

from unwise idioms

-Waddress

-Warray-bounds (only with „-O2‟)

-Wc++0x-compat

-Wchar-subscripts

-Wimplicit-int

-Wimplicit-function-declaration

-Wcomment

-Wformat

-Wmain (only for C/ObjC and unless „-ffreestanding‟)

-Wmissing-braces

-Wnonnull

-Wparentheses

-Wpointer-sign

-Wreorder

-Wreturn-type

-Wsequence-point

-Wsign-compare (only in C++)

-Wstrict-aliasing

-Wstrict-overflow=1

-Wswitch

-Wtrigraphs

-Wuninitialized

-Wunknown-pragmas

-Wunused-function

-Wunused-label

-Wunused-value

-Wunused-variable

-Wvolatile-register-var

option description

-W level of warnings to display
(common usage:  -Wall for all warnings)

-o output executable file name
(if omitted, compiles to file  a.out )

-g generates information for debugger tools

Guess: how many pages does the 

gcc manual have on gcc options?

printf

• printf("format string", parameters);

• A format string contains placeholders to insert 

parameters into it:

– %d or %i an integer

– %lf a double ('long floating-point')

– %s a string

– %p a pointer (seen later)

int x = 3; int y = 2;

printf("(%d, %d)\n", x, y);   // (3, 2)

function description

printf prints formatted output to stdout

printf continued

• A placeholder can specify the parameter's width or 

precision:

– %8d an integer, 8 characters wide, right-

aligned

– %-8d an integer, 8 characters wide, left-aligned

– %.4f a real number, 4 digits after decimal

– %6.2f a real number, 6 total characters wide, 2 

after decimal

• Examples:

int age = 45;

double gpa = 1.2345678;

printf("%8d %7.3f\n", age, gpa);

printf("%8.2f %.1f %10.5f", gpa, gpa, gpa);

Very much the same as Java

• General syntax for statements, control structures, 

function calls

• Types int, double, char, long

– type-casting syntax

• Expressions, operators, precedence

+ - * / % ++ --

= += -= *= /= %=

< <= == != > >= && || !

• Scope (within set of { } braces)

• Comments:  /* ... */, // ( // not officially legal 

until C99)



10/16/2009

3

Mostly the same as Java

• Variables

– can be used without being initialized (!)

– must be declared at the start of a function or block    

(changed in C99)

• for loops

– variable cannot be declared in the loop header

• if/else statements,  while and do/while loops

– there is no boolean type (changed in C99)

– any type of value can be used as a test

– 0 means false, every other number means true

• Parameters / returns

– C has certain features for values vs. references ("pointers")

Very different from Java

• Strings

– very clunky to use in C; arrays of characters

– are not objects;  do not contain methods (external string 

functions)

• I/O to/from console and files

– no Scanner;  must use input functions such as scanf

– console I/O different than file I/O

• Errors and exceptions

– C has no try/catch and does not represent errors as objects

– errors are usually returned as integer error codes from 

functions

– crashes are mostly called "segmentation faults" and are not 

of much direct utility in figuring out what is wrong

Also very different

• Arrays

– are just bare contiguous blocks of memory

– have no methods and do not know their own length (!)

• Objects

– C doesn't have them

– closest similar feature:  struct (a set of fields; no methods)

• Memory management

– most memory that you consume, you must explicitly free 

afterward

• API and provided libraries

– C doesn't have very many, compared to Java

– you must write many things yourself (even data structures)

scanf

• scanf("format string", variables);

• uses same syntax for formatted strings, 
placeholders as printf

• Must precede each variable with an & (address-of 

operator)

int x;

int y;

printf("Type your x and y values: ");

scanf("%d %d", &x, &y);

function description

scanf reads formatted input from console

scanf continued

• scanf returns the number of values successfully 

read: can be examined to see whether the reading 

was successful

• if # of variables listed doesn't match # of format 

placeholders

– too many variables: later ones ignored

– too few variables: program crashes!

• Can match a specific input pattern

int x;

int y;

printf("What is your (x, y) point?\n");

scanf("My point is (%d, %d)", &x, &y);

Practice exercise

• Write a C program that makes change:

– prompts the user for an amount of money

– reports the number of pennies, nickels, dimes, 

quarters, and dollars

• Example

Amount of money? 17.93

Pennies :   2

Nickels :   1

Dimes   :   1

Quarters:   3

Dollars :  17



10/16/2009

4

Social Implications/Ethics Friday

• Forum On Risks To The Public In Computers And 

Related Systems: http://catless.ncl.ac.uk/Risks

• What is an engineering failure?

• What are some of your “favorite” failures related to 

computers and software?

• What do we learn from them?

CSE303 Au09 19

Questions?

CSE303 Au09 20

http://catless.ncl.ac.uk/Risks

