
10/12/2009

1

David Notkin  Autumn 2009  CSE303 Lecture 6

HW 2A in focus

anagram

raga Man computer science (&) engineering

epic reticence ensuring gnome

notkin beard

drank one bit

HW 2A

• Understanding vs. doing – this is not a straightforward barrier to

overcome, and it doesn‟t happen all at once

• Breaking down solutions into parts is crucial

– Edsger W. Dijkstra, ACM Turing Lecture 1972, “The Humble

Programmer”

• Some amount of “finding things on your own” is essential;

perhaps I expected too much of this for this assignment

– sed and regular expressions

– loops

– …

• Performance – not the high priority

– Linear vs. quadratic (or worse) complexity of the script

Editors

• To write and change your programs you should be

using an editor – what‟s the alternative?

• The most common editors on Unix are pico, emacs

and vi – pico is simple, emacs is (arbitrarily) complex,

and vi is still loved by many old-time Unix users

• You don‟t need to become an expert in these, but it‟s

worth an investment to become capable

CSE303 Au09 3

ed/sed

• But you didn‟t mention sed on the previous slide?

Isn‟t it a “stream editor”? Indeed it is.

• It‟s closely related to ed, a line editor from the first

days of Unix

– ed let you interactively edit lines, changing parts of

specific lines – referred to by number and/or by

content – inserting and deleting lines, etc.

CSE303 Au09 4

Example ed session [Wikipedia]

a

ed is the standard Unix text editor.

This is line number two.

.

2i

.

%l

ed is the standard Unix text editor.$

$

This is line number two.$

3s/two/three/

,l

ed is the standard Unix text editor.$

$

This is line number three.$

w text

65

q

The end result is a simple text file

containing the following text:

ed is the standard Unix text editor.

This is line number three.

CSE303 Au09 5

sed: non-interactive ed

• But sometimes you wanted to use ed-like features –

in particular regular expression matching – non-

interactively

• That‟s what sed is for – using ed-like commands on

a string to do transformations that are hard or
impossible to do with tr, etc.

• A core feature is the use of regular expressions –

these are powerful and found in other Unix tools,
most noticeably grep

CSE303 Au09 6

10/12/2009

2

What is a regular expression?

• "[a-zA-Z_\-]+@(([a-zA-Z_\-])+\.)+[a-zA-Z]{2,4}"

• regular expression: a description of a pattern of text

– can test whether a string matches the expression's

pattern

– can use a regex to search/replace characters in a

string

– regular expressions are powerful but can be tough

to read

• the above regular expression matches basic

email addresses

Regular expressions

• Appear throughout computer science, in tools, in

theory, in practice

• Powerful enough to be very useful; other kinds of

matching require more powerful languages than

regular expressions, but they are more complex

• Lots of variations, but all have the same “power” –

that is, they can match the same patterns, although

the expressions themselves may be more or less

complicated

CSE303 Au09 8

egrep and regexes

egrep "[0-9]{3}-[0-9]{3}-[0-9]{4}"

command description

egrep extended grep; uses regexes in its search
patterns; equivalent to grep -E

Basic regexes

• The simplest regexes simply match a particular
substring: "abc"

• Matches any line containing "abc"

– YES : "abc","abcdef","defabc",".=.abc.=.",

...

– NO : "fedcba","ab c","AbC","Bash", ...

Wildcards and anchors

• . (a dot) matches any character except \n

– ".oo.y" matches "Doocy", "goofy", "LooPy", ...

– use \. to literally match a dot . character

• ^ matches the beginning of a line; $ the end

– "^fi$" matches lines that consist entirely of "fi"

• \< demands that pattern is the beginning of a word;

\> demands that pattern is the end of a word

– "\<for\>" matches lines that contain the word

"for"

Special characters

• | means or

– "abc|def|g" matches lines with "abc",

"def", or "g“

• precedence of ^(Subject|Date): vs.

^Subject|Date:

• There's no and symbol. Why not?

• () are for grouping

– "(Homer|Marge) Simpson" matches lines

containing "Homer Simpson" or "Marge

Simpson“

• \ starts an escape sequence: many characters must

be escaped to match them: /\$.[]()^*+?

10/12/2009

3

Quantifiers: * + ?

• * means 0 or more occurrences

– "abc*" matches "ab","abc","abcc", "abccc", ...

– "a(bc)*" matches "a", "abc", "abcbc",

"abcbcbc", ...

– "a.*a" matches "aa", "aba", "a8qa", "a!?_a",

...

• + means 1 or more occurrences

– "a(bc)+" matches "abc", "abcbc", "abcbcbc",

...

– "Goo+gle" matches "Google", "Gooogle",

"Goooogle", ...

• ? means 0 or 1 occurrences

– "Martina?" matches lines with "Martin", "Martina"

– "Dan(iel)?" matches lines with "Dan" or "Daniel"

More quantifiers

• {min,max} means between min and max

occurrences

– "a(bc){2,4}" matches "abcbc",

"abcbcbc", or "abcbcbcbc"

• min or max may be omitted to specify any number

– "{2,}" means 2 or more

– "{,6}" means up to 6

– "{3}" means exactly 3

Character sets

• [] group characters into a character set;

will match any single character from the set

– "[bcd]art" matches strings containing

"bart", "cart", and "dart"

– equivalent to "(b|c|d)art"

Character ranges

• Specify a range of characters with -

– "[a-z]" matches any lowercase letter

– "[a-zA-Z0-9]" matches any lower- or

uppercase letter or digit

• an initial ^ inside a character set negates it

– "[^abcd]" matches any character other than a,

b, c, d

• inside a character set, - must be escaped to be

matched

– "[+\-]?[0-9]+" matches optional + or -,

followed by at least one digit

sed

• Usage:

– sed -r "s/REGEX/TEXT/g" filename

• substitutes (replaces) occurrence(s) of regex

with the given text

• if filename is omitted, reads from standard input

• sed has other uses, but most can be emulated

with substitutions

• Example (replaces all occurrences of 143 with 303):

– sed -r "s/143/303/g" lecturenotes.txt

command description

sed stream editor; performs regex-based
replacements and alterations on input

more about sed

• sed is line-oriented; processes input a line at a time

• -r option makes regexes work better

– recognizes () , [] , * , + the “right”

way, etc.

• g flag after last / matches all occurrences

• special characters must be escaped to match them

literally

– sed -r "s/http:\/\//https:\/\//g" urls.txt

• sed can use other delimiters besides / ... whatever

follows s

– find /usr |

sed -r "s#/usr/bin#/home/billy#g"

10/12/2009

4

Back-references

• every span of text captured by () is given an internal

number

– you can use \number to use the captured text in

the replacement

– \0 is the overall pattern

– \1 is the first parenthetical capture

– ...

• Example: swap last names with first names

– sed -r "s/([^]*), ([^]*)/\2 \1/g"

loops

while read line; do

echo $line

done

CSE303 Au09 20

Debugging

• “Debugging is important, especially since the shell is

so sensitive to details. I recommend two things: (a)

trying your commands individually in the command-

line as you're trying to build your shell scripts;

and (b) assigning and echoing „unnecessary‟

variables in your scripts that can be used to help see

what's happening step-by-step.”

• When things don‟t work, what do you do?

CSE303 Au09 21

Performance

• I'm not worried about performance (within a little bit of

reason) on 2A. Bill Wulf, who served as president of

the National Academy of Engineering for over a

decade, once said something like: “More mistakes

are made by premature optimization than for any

other reason including sheer ignorance.”

– OK, maybe it doesn‟t work right, but at least it‟s

really fast.

– Well, if it doesn‟t have to work right, I can make it

even faster!

CSE303 Au09 22

Algorithmic complexity

• When dealing with a lot of data, what is usually most important

about performance is the underlying algorithmic complexity

– Very roughly, how many times do you need to touch each

data item

• Examples

– Finding a number in an unsorted list: linear search

– Finding a number in a sorted list: linear or binary search

– Sorting a list: O(N2) vs. O(N log N)

• HW2: if you touch every entry in the dictionary many times for

each input string, that might be a problem – there are 479,829

entries

CSE303 Au09 23 CSE303 Au09 24
http://www.cs.bath.ac.uk/~jjb/here/CM10135/CM10135_Lecture3_2004.html

10/12/2009

5

Wednesday

• I‟d like to spend about 15 minutes having about three

students present their solution to 2A to the class

• I‟ll pick some varying approaches

• Please send me email if you are willing to present

your solution

CSE303 Au09 25

Questions?

CSE303 Au09 26

