
10/5/2009

1

David Notkin Autumn 2009 CSE303 Lecture 3

Dictionary.com, “shell," in Dictionary.com Unabridged. Source location: Random House, Inc.

http://dictionary.reference.com/browse/shell. Available: http://dictionary.reference.com. Accessed: October 04, 2009.

• a hard outer covering of an animal, as the hard case of a mollusk, or either

half of the case of a bivalve mollusk

• any of various objects resembling such a covering, as in shape or in being

more or less concave or hollow

• the hard exterior of an egg

• a hard, protecting or enclosing case or cover

• an attitude or manner of reserve that usually conceals one's emotions,

thoughts, etc.

• a hollow projectile for a cannon, mortar, etc., filled with an explosive charge

designed to explode during flight, upon impact, or after penetration

• small pieces of pasta having the shape of a shell

• the lower pastry crust of a pie, tart, or the like, baked before the filling is

added

Shell (nouns, selected) Today

• Combining commands

– input/output redirection

– pipes

• Processes and basic process management

I/O streams: standard

• Three I/O streams: stdin, stdout,

stderr

• The program itself has statements that read

or write to these streams

• #include <stdio.h>

main() {

printf(“Hello 303\n");

}

• printf is defined to write to stdout

• So the program doesn’t know or care where

it is writing output

• Similarly, for reading input or writing errors
(using, for example, scanf and fprintf)

CSE303 Au09 3

program

stdin

stdout stderr

Output redirection

• This standard allows the shell to provide user-level

redirection of I/O

• command > filename

• Run command and write its output to filename

– That is, hook filename to stdout of command

instead of defaulting to the console

– Take care: existing files are overwritten

• >> appends to filename rather than overwriting it

• Again, the program representing command doesn’t

manage – or even know anything about – such

redirection

Examples

• ls -l > myfiles.txt

• java Foo >> Foo_output.txt

• cat > somefile.txt

(writes console input to the file until you press ^D)

– Easy way to create a simple file without using an

editor

CSE303 Au09 5

Miscellaneous

• command > /dev/null suppresses the output

– Why might you want to do this?

– What is /dev/null?

• Redirecting stderr: Same idea, with silly syntax

(RTFM – Read The &*(@%$% Manual)

• How might you do the equivalent of output redirection

in a Windows environment?

• In any GUI-based environment?

CSE303 Au09 6

http://dictionary.reference.com/browse/shell
http://dictionary.reference.com/

10/5/2009

2

Input redirection: same idea for stdin

• command < filename

• Run command and use filename as stdin

– If the program reads from stdin, instead of

awaiting input from the console, it will instead read

the input from a file

• Only works for programs written in terms of stdin –

if a program explicitly reads input from a specific file,

that cannot be overridden by the shell

• Remember: arguments/parameters are passed in

through the command line, and are unaffected by any

redirection

Combine input and output redirection

sort -r < /usr/share/dict/linux.words > rev.dict

CSE303 Au09 8

Combining commands

• wc /usr/share/dict/linux.words > t

• grep 0 < t

• When the output of one command is used as the

input to the next command, there is a lovely

shorthand – pipes (or sometimes pipelines)

• wc /usr/share/dict/linux.words | grep 0

• This connects the stdout of wc to the stdin of

grep

CSE303 Au09 9

Examples

ls –l | more

grep free /sources/gnu/less/*.c | uniq | sort

grep free /sources/gnu/less/*.c | uniq | sort | wc

grep free /sources/gnu/less/*.c | sort | uniq | wc

grep free /sources/gnu/less/*.c | grep -v freelist

CSE303 Au09 10

Multiple commands

• Less important than pipes, you can also run multiple

unrelated commands in the shell

• command1 ; command2

– run command1 and then command2 afterward –

there is no connection between the programs or

their input/output streams

• command1 && command2

– run command1, and if and only if it succeeds, run

command2 afterward

• Question: what does it mean for a command to

“success” or “fail”?

CSE303 Au09 11

An unfair, but interesting, comparison

• “Given a text file and an integer k, print the k most

common words in the file (and the number of their

occurrences) in decreasing frequency.”

–Jon Bentley, Programming Pearls ~1986

• Donald Knuth solution

– CACM, Programming Pearls, June 1986 (Bentley

with Knuth and McIlroy)

– Literate Programming

– Key data structure: trie

– Roughly eight pages, including documentation,

index, etc.

CSE303 Au09 12

10/5/2009

3

McIlroy’s quotations

• “I found Don Knuth’s program convincing as a

demonstration of [literate programming] and

fascinating for its data structure, but I disagree with it

on engineering grounds.”

• “A first engineering question to ask is: how often is

one likely to have to do this exact task’? Not at all

often, I contend. It is plausible, though, that similar,

but not identical, problems might arise. A wise

engineering solution would produce – or better,

exploit – reusable parts.”

• “The following shell script was written on the spot and

worked on the first try.”

CSE303 Au09 13

McIlroy’s solution

tr -cs A-Za-z\' '\n' |

tr A-Z a-z |

sort |

uniq -c |

sort -k1,1nr -k2 |

sed ${1:-25}q

• Make one-word lines by

transliterating the complement of

the alphabet into newlines and

squeezing out multiple newlines.

• Transliterate upper case to lower

case.

• Sort to bring identical words

together.

• Replace each run of duplicate

words with a single representative

and include a count

• Sort in reverse numeric order.

• Pass through a stream editor; quit

after printing the number of lines

designated by the script’s first

parameter (default is 25)

CSE303 Au09 14

No, I don’t expect you to

be able to do this! It’s to

show some of the power.

Common misuses: pipes and cat

• bad: cat filename | command

• good: command < filename

• bad: cat filename | more

• good: more filename

• bad: command | cat

• good: command

Processes

• A set of Unix commands deal with processes –
examples include ps, fg, bg, kill, …

• What is a process?

• Is it the same as a program? Actually, what is a

program?

– hello.c, hello.s, a.out, …

Rough idea: process

• A process is a running execution of a program

– Lots of details about processes vary across

operating systems – beyond the scope of 303

• When you execute a command, a process is created,

the program is instantiated and executed – when the

program completes, the process is killed

• If you execute one command twice simultaneously –

how would you do this? – then each execution takes

place in its own process

– Each has its own variables, own stdin/stdout,

can take different branches, doesn’t know about

the other, etc.

CSE303 Au09 17

Processes: a bit more

• The operating system has its own processes, too

– Some manage disks, other manage processes, …

– In Unix, OS processes are owned by root and

each process has a unique ID (PID)

• And other users sharing the same operating system

have their own processes

• The OS makes sure that each process gets its

chance to execute on the CPU(s) – this is called

scheduling

CSE303 Au09 18

10/5/2009

4

Process commands

command description

ps list processes being run by a user;
each process has a unique integer id (PID)

top show which processes are using CPU/memory;
also shows stats about the computer

Keeps executing until killed!

kill terminate a process by PID

killall terminate processes by name

• use kill or killall to stop a runaway process

(infinite loop)

• similar to ^C hotkey

Background processes

• You would like some processes to continue while you are doing

other things – maybe your editor, maybe a browser, etc.

• You can do this by running some processes “in the

background”, so the shell doesn’t have to wait until those

processes finish; ex:
$ emacs &

• If you forget to use &, suspend your process with ^Z, then run

bg

command description

& (special character) when placed at the end of a
command, runs that command in the background

^Z (hotkey) suspends the currently running process

fg

bg

resumes the currently suspended process in either
the foreground or background

Searching and sorting: repeat

• grep is a very powerful search tool; more over time

command description

grep search a file for a given string

sort convert an input into a sorted output by lines

uniq strip duplicate lines

find search for files within a given directory

locate search for files on the entire system

which shows the complete path of a command

Keyboard shortcuts: repeat

^KEY means hold Ctrl and press KEY

key description

Up arrow repeat previous commands

Home/End or ^A/^E move to start/end of current line

" quotes surround multi-word arguments and
arguments containing special characters

* "wildcard" , matches any files;
can be used as a prefix, suffix, or partial name

Tab auto-completes a partially typed file/command name

^C or ^\ terminates the currently running process

^D end of input; used when a program is reading input
from your keyboard and you are finished typing

^Z suspends (pauses) the currently running process

^S don't use this; hides all output until ^G is pressed

File system: repeat

CSE303 Au09 23

directory description

/ root directory that contains all others
(drives do not have letters in Unix)

/bin programs

/dev hardware devices

/etc system configuration files

 /etc/passwd stores user info

 /etc/shadow stores passwords

/home users' home directories

/media,/mnt,... drives and removable disks that have been "mounted"
for use on this computer

/proc currently running processes (programs)

/tmp, /var temporary files

/usr user-installed programs

Questions?

CSE303 Au09 24

