
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Spring 2008

Lecture 14— Makefiles & Compilation Management

CSE303 Spring 2008, Lecture 14 1

'

&

$

%

Where are We

• Onto tools. . .

• Basics of make, particular the concepts

• Some fancier make features (revenge of funky characters)

Besides the slides and online Unix docs, the Stanford CSLib notes on

Unix Programming Tools has a nice concise presentation of make and

other tools:

• http://cslibrary.stanford.edu/107/UnixProgrammingTools.pdf

CSE303 Spring 2008, Lecture 14 2

'

&

$

%

Onto tools

The language-implementation (preprocessor, compiler, linker,

standard-library) is hardly the only useful thing for developing software.

The rest of the course:

• Tools (recompilation managers, version control, debuggers,

profilers)

• Software-engineering issues

• A taste of C++

• Concurrency

• Societal implications

CSE303 Spring 2008, Lecture 14 3

'

&

$

%

make

make is a classic program for controlling what gets (re)compiled and

how. Many other such programs exist (e.g., ant, maven, “projects” in

IDEs, ...)

make has tons of fancy features, but only two basic ideas:

1. Scripts for executing commands

2. Dependencies for avoiding unnecessary work

To avoid “just teaching make features” (boring and narrow), let’s

focus more on the concepts...

CSE303 Spring 2008, Lecture 14 4

'

&

$

%

Build scripting

Programmers spend a lot of time “building” (creating programs from

source code)

• Programs they write

• Programs other people write

Programmers automate repetitive tasks. Trivial example:

gcc -Wall -g -o myprog foo.c bar.c baz.c

If you:

• Retype this every time: “shame, shame”

• Use up-arrow or history: “shame” (retype after logout)

• Have an alias or bash script: “good-thinkin”

• Have a Makefile: you’re ahead of us

CSE303 Spring 2008, Lecture 14 5

'

&

$

%

“Real” build processes

On larger projects, you can’t or don’t want to have one big (set of)

command(s) that redoes everything every time you change anything.

1. If gcc didn’t combine steps behind your back, you could need to

preprocess and compile each file, then call the linker.

2. If another program (e.g., sed) created some C files, you would

need an “earlier” step.

3. If you have other outputs for the same source files (e.g.,

javadoc), it’s unpleasant to type the source files multiple times.

4. If you want to distribute source code to be built by other users.

5. If you have 105 to 107 lines of source code, you don’t want to

recompile them all every time you change something.

A simple script handles 1–4 (use a variable for the filenames for 3), but

5 is trickier.

CSE303 Spring 2008, Lecture 14 6

'

&

$

%

Recompilation management

The “theory” behind avoiding unnecessary compilation is a

“dependency dag”:

• To create a target t, you need sources s1,s2,...,sn and a

command c (that directly or indirectly uses the sources)

• If t is newer than every source (file-modification times), assume

there is no reason to rebuild it.

• Recursive building: If some source si is itself a target for some

other sources, see if it needs to be rebuilt. Etc.

• Cycles “make no sense”

CSE303 Spring 2008, Lecture 14 7

'

&

$

%

Theory applied to C

Another whole lecture on linking is in our future, but here is what you

need to know today for C:

• Compiling a .c creates a .o and depends on all included files

(recursively/transitively).

• Creating an executable (“linking”) depends on .o files.

• So if one .c file changes, just need to recreate one .o file and

relink.

• If a header-file changes, may need to rebuild more.

• Of course, this is only the simplest situation.

CSE303 Spring 2008, Lecture 14 8

'

&

$

%

An algorithm

What would a program (e.g., a shell script) that did this for you look

like? It would take:

• a bunch of triples: target, sources, command(s)

• a “current target to build”

It would compute what commands needed to be executed, in what

order, and do it. (It would detect cycles and give an error.)

This is exactly what programs like make, ant, and things integrated

into IDEs do!

CSE303 Spring 2008, Lecture 14 9

'

&

$

%

make basics
The “triples” are typed into a “makefile” like this:

target: sources

command
Example:

foo.o: foo.c foo.h bar.h

gcc -Wall -o foo.o -c foo.c

Syntax gotchas:

• The colon after the target is required.

• Command lines must start with a TAB NOT SPACES

• You can actually have multiple commands (executed in order); if

one command spans lines you must end the previous line with \.

• Which shell-language interprets the commands? (Typically bash,

to be sure set the SHELL variable in your makefile.)

CSE303 Spring 2008, Lecture 14 10

'

&

$

%

Using make

At the prompt:

prompt% make -f nameOfMakefile aTarget

Defaults:

• If no -f specified, use a file named Makefile.

• If not target specified, use the first one in the file.

Together: I can download a tarball, extract it, type make (four

characters) and everything should work.

Actually, there’s typically a “configure” step too, for finding things like

“where is the compiler” that generates the Makefile (but we won’t

get into that).

CSE303 Spring 2008, Lecture 14 11

'

&

$

%

Basics Summary

So far, enough for homework 4 and basic use.

• A tool that combines scripting with dependency analysis to avoid

unnecessary recompilation.

• Not language or tool-specific: just based on file-modification times

and shell-commands.

But there’s so much more you want to do so that your Makefiles are:

• Short and modular

• Easy to reuse (with different flags, platforms, etc.)

• Useful for many tasks

• Automatically maintained with respect to dependencies.

Also, reading others’ makefiles can be tough because of all the

features: see info make or entire books.

CSE303 Spring 2008, Lecture 14 12

'

&

$

%

Precise review

A Makefile has a bunch of these:

target: source1 ... sourcen

shell_command

Running make target does this:

• For each source, if it is a target in the Makefile, process it

recursively

• Then:

– If some source does not exist, error.

– If some source is newer than the target (or target does not

exist), run shell_command (presumably updates target, but

that is up to you).

CSE303 Spring 2008, Lecture 14 13

'

&

$

%

make variables
You can define variables in a Makefile. Example:

CC = gcc

CFLAGS = -Wall

foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -c foo.c -o foo.o

Why do this?

• Easy to change things once and affect many commands.

• Can change variables on the command-line (overrides definitions

in file). (For example make CFLAGS=-g.)

• Easy to reuse most of a Makefile from one “homework” to the

next.

• Can use conditionals to set variables (using inherited environment

variables):

CSE303 Spring 2008, Lecture 14 14

'

&

$

%

make conditionals

EXE=

ifdef WINDIR # assume we are on a Windows machine

EXE=.exe

endif

myprog$(EXE): foo.o bar.o

$(CC) $(CFLAGS) -o myprog$(EXE) foo.o bar.o

Other forms of conditionals exist (e.g., are two strings equal)

CSE303 Spring 2008, Lecture 14 15

'

&

$

%

more variables
It’s also common to use variables to hold list of filenames:

OBJFILES = foo.o bar.o baz.o

myprog: $(OBJFILES)

gcc -o myprog $(MYOBJFILES)

clean:

rm $(OBJFILES) myprog

clean is a convention: remove any generated files, to “start over” and

have just the source.

It’s “funny” because the target doesn’t exist and there are no sources,

but that’s okay:

• If target doesn’t exist, it must be “remade” so run the commands

• These “phony” targets have several uses, another is an “all”

target:

CSE303 Spring 2008, Lecture 14 16

'

&

$

%

“all” example

all: prog B.class someLib.a # notice no commands this time

prog: foo.o bar.o main.o

gcc -o prog foo.o bar.o main.o

B.class: B.java

javac B.java

someLib.a: foo.o baz.o

ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h

gcc -c -Wall foo.c

... (similar targets for bar.o, main.o, baz.o) ...

CSE303 Spring 2008, Lecture 14 17

'

&

$

%

Revenge of funny characters

UNIX hackers just can’t get enough of funny metacharacters can they?

In commands:

• $@ for target

• $^ for all sources

• $< for left-most source

• ...

Examples:

myprog$(EXE): foo.o bar.o

$(CC) $(CFLAGS) -o $@ $^

foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -c $<

CSE303 Spring 2008, Lecture 14 18

'

&

$

%

More fancy stuff

• There are a lot of “built-in” rules. E.g., make just “knows” to

create foo.o by calling $(CC) $(CFLAGS) on foo.c. (Opinion:

more confusing than helpful. YMMV)

• There are “suffix” rules and “pattern” rules. Example:

%.class: %.java

javac $< # Note we need $< here

• Remember you can put any shell command on the command-line,

even whole scripts

• You can repeat target names to add more dependencies (useful

with automatic dependency generation).

Often this stuff is more useful for reading makefiles than writing your

own (until some day...)

CSE303 Spring 2008, Lecture 14 19

'

&

$

%

Dependency generation

So far, we are still listing dependencies manually, e.g.:

foo.o: foo.c foo.h bar.h

If you forget, say, bar.h, you can introduce subtle bugs in your

program (or if you’re lucky, get confusing errors).

This is not make’s problem: It has no understanding of different

programming languages, commands, etc., just file-mod times.

But it does seem too error-prone and busy-work to have to remember

to update dependencies, so there are often language-specific tools that

do it for you...

CSE303 Spring 2008, Lecture 14 20

'

&

$

%

Dependency-generator example

gcc -M

• Actually lots of useful variants, including -MM and -MG. See man

gcc

• Automatically creates a rule for you.

• Then include the resulting file in your Makefile.

• Typically run via a phony depend target, e.g.:

depend: $(PROGRAM_C_FILES)

gcc -M $^

• The program makedepend combines many of these steps; again it

is C-specific but some other languages have their own.

CSE303 Spring 2008, Lecture 14 21

'

&

$

%

Build-script summary

Always script complicated tasks.

Always automate “what needs rebuilding” via dependency analysis.

make is a text-based program with lots of bells and whistles for doing

this. It is not language-specific. Use it.

With language-specific tools, you can automate dependency

generation.

make files have this way of starting simple and ending up unreadable.

It is worth keeping them clean.

There are conventions like make all and make clean common when

distributing source code.

CSE303 Spring 2008, Lecture 14 22

