
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Autumn 2008

Lecture 29— Function Pointers and Objects

CSE303 Autumn 2008, Lecture 29 1



'

&

$

%

Function pointers

“Pointers to code” are almost as useful as “pointers to data”.

(But the syntax is more painful.)

(Somewhat silly) example:

void app_arr(int len, int * arr, int (*f)(int)) {

for(; len > 0; --len)

arr[len-1] = (*f)(arr[len-1]);

}

int twoX(int i) { return 2*i; }

int sq(int i) { return i*i; }

void twoXarr(int len, int* arr) { app_arr(len,arr,&twoX); }

void sq_arr(int len, int* arr) { app_arr(len,arr,&sq); }

CSE 341 spends a week on why function pointers are so useful; today

is mostly just how in C.

CSE303 Autumn 2008, Lecture 29 2



'

&

$

%

Function pointers, cont’d

Key computer-science idea: You can pass what code to execute as an

argument, just like you pass what data to process as an argument.

Java: An object is (a pointer to) code and data, so you’re doing both

all the time.

// Java

interface I { int m(int i); }

void f(int arr[], I obj) {

for(int len=arr.length; len > 0; --len)

arr[len-1] = obj.m(arr[len-1]);

}

The m method of an I can have access to data (in fields).

C separates the concepts of code, data, and pointers.

CSE303 Autumn 2008, Lecture 29 3



'

&

$

%

C function-pointer syntax

C syntax: painful and confusing. Rough idea: The compiler “knows”

what is code and what is a pointer to code, so you can write less than

we did on the last slide:

arr[len-1] = (*f)(arr[len-1]);

→ arr[len-1] = f(arr[len-1]);

app_arr(len,arr,&twoX);

→ app_arr(len,arr,twoX);

For types, let’s pretend you always have to write the “pointer to code”

part (i.e., t0 (*)(t1,t2,...,tn)) and for declarations the variable

or field name goes after the *.

Sigh.

CSE303 Autumn 2008, Lecture 29 4



'

&

$

%

What is an Object?

First Aproximation

• An object consists of data and methods

– Provides the correct model

– Easy to explain

• But. . .

– Doesn’t make engineering sense — we don’t want to replicate

the (same) method bodies (code) in every object

CSE303 Autumn 2008, Lecture 29 5



'

&

$

%

What is an Object?

Second Aproximation

• An object consists of data and pointers to methods

• The compiler adds an additional, implicit this parameter to every

method to provide a reference to the receiving object

– Gives the method a way to refer to the instance variables of

the correct receiver object

• Avoids code duplication

• But. . .

– Still wastes space, particularly if there is relatively little

instance data, or if the class has a large number of methods

CSE303 Autumn 2008, Lecture 29 6



'

&

$

%

What is an Object?

How it’s really done

• There is a single “virtual function” table (vtable) for each class

containing pointers to the methods belonging to that class.

– This is static class data — does not change during execution

• An object consists of data and a pointer to its class vtable

• Method calls are indirect through the vtable

• Each method still has an implicit this parameter that refers to

the receiving object

• Avoids code duplication

• Avoids method pointer duplication

• Costs an indirect pointer lookup for each function call

CSE303 Autumn 2008, Lecture 29 7



'

&

$

%

Inheritance and Overriding

Basic ideas:

• We have a vtable for every class and subclass

• The vtable for a subclass points to the correct methods — either

ones belonging to the base class that are inherited, or ones

belonging to the subclass (added or overriding)

• Key idea: The initial part of the vtable for a subclass points to the

methods that are inherited or overridden from the base class in

exactly the same order they appear in the base class vtable

– So compiled code can find a method at the same offset in the

vtable whether it is overridden or not

• Use casts as needed to adjust references up and down the

inheritance chain

CSE303 Autumn 2008, Lecture 29 8


