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/VVhere are We

Previously we looked at the basics of #include and #define

Time to go back and look at the preprocessor in more detail
(particularly handling multiple source files and headers)
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ﬂl’he compilation picture
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gcc does all this for you

o

e -E to only preprocess, put result on stdout (rare)

e —c to stop with .o (common; for part of a program)
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/I\/Iore about multiple files
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Typical usage:
e Preprocessor #include to get a file describing code)

e Linker is passed your .o and other code
— By default, the “standard C library”

— Other .0 and .a files

QVhoIe lecture on the linker and libraries later.
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ﬂl’he Preprocessr

Rewrites your . c file before the compiler gets at the code.
e Lines starting with # tell it what to do.

Can do crazy things (please don't); uncrazy things are:
1. Including contents of header files (see previous slide)

2. Defining constants and parameterized macros
(textual-replacements)

e Actually token-based (to be explained)

e Easy to misdefine and misuse

3. Conditional compilation
e Include/exclude part of a file

e Example uses: code for debugging, code for some computers,

\\ “the trick” for including header files only once

/
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/File inclusion (Review) \

#include <foo.h>

e Search for file foo.h in “system include directories” (on attu
/usr/include and subdirs) for foo.h and include its
preprocessed contents (recursion!) at this place.

— Typically lots of nested includes, so result is a mess nobody
looks at.

— Idea is simple: declaration for fgets is in stdio.h (use man for
what file to include)

e #include "foo.h" the same but first look in current directory.

— How you break your program into smaller files and still make
calls to other files.

e gcc -I dirl -I dir2 ... look in these directories for all
\\ header files first (keeps paths out of your code files). /
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/Conventions \

Conventions to always follow:

1. Give included files names ending in .h; only include these header
files. Never include a .c source file.

2. Do not put functions in a header file; only struct definitions,
prototypes, and other includes.

3. Do all your #include at the beginning of a file.

4. For header file foo.h start it with:

#ifndef FOO_H
#define FOO_H

and end it with:
#tendif

\\ (We will learn why soon.) /

CSE303 Autumn 2008, Lecture 12 7




/Simple macros (Review) \

#define M_PI 3.14 // capitals a convention to avoid problems

#define DEBUG_LEVEL 1
#define NULL O // already in standard library
Replace all matching tokens in the rest of the file

e Knows where “words” start and end (unlike sed)

e Has no notion of scope (unlike C compiler)

e (Rare: can shadow with another #define or use #undef)

#define foo 17
void £() {
int food = foo; // becomes int food = 17 (ok)
int foo = 9+foo+foo; // becomes int 17 = 9+17+17 (nonsense)
\Z %
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//RﬂacrOS‘mﬁth parameters ﬁ\\\

#define TWICE_AWFUL(x) x*2
#define TWICE_BAD(x) ((x)+(x))
#define TWICE _OK(x) ((x)x*2)

double twice(double x) { return x+x; } // my preference

Replace all matching “calls” with “body” but with text of arguments
where the formals are.

Gotchas (understand why!):
o y=3; z=4; w=TWICE_AWFUL(y+z);
o y=7; z=TWICE_BAD(++y); z=TWICE_BAD(y++);

Common misperception: Macros a good idea to avoid performance
overhead of a function call.

Macros can be more flexible though (TWICE_OK works on ints and

\ioubles without conversions (which could round)) /
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/Justifiable uses \

Parameterized macros are generally to be avoided (use functions), but

there are things functions cannot do:

#define NEW_T(t,cnt) ((t*)malloc((cnt)x*sizeof(t))

#define PRINT(x) printf("%s:%d %s\n",__FILE__,__LINE__,x)
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/Conditional compilation \

#ifdef FOO (matching #endif later in file)

#ifndef FOO (matching #endif later in file)
#if FOO > 2 (matching #endif later in file)
(You can alse have a #else inbetween somewhere.)

Simple use: #ifdef DEBUG // do following only when debugging

printf(...);
#endif
Fancier: #ifdef DEBUG // use DBG_PRINT for debugging-prints
#define DBG_PRINT(x) printf("%s",x)
#else
#define DBG_PRINT(x) // replace with nothing
#endif

\\Note: gcc -D FOO makes FOO “defined” /
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/Back to header files \

Now we know what this means:

#ifndef SOME_HEADER_H
#define SOME_HEADER_H

. rest of some_header.h ...
#endif

Assuming nobody else defines SOME_HEADER_H (convention), the first
#include "some_header.h" will do the define and include the rest

of the file, but the second will skip everything.
e More efficient than copying the prototypes over and over again.

e In presence of circular includes, necessary to avoid “creating” an

infinitely large result of preprocessing.

So we always do this. /
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/C preprocessor summary

~

A few easy to abuse features and a bunch of conventions (for
overcoming C's limitations).

e #include (cycles fine with “the trick”, the way you say what

other definitions you need)

e #define (avoids magic constants, parameterized macros have a

few justifiable uses, token-based text replacement)

o #if... (for showing the compiler less code)
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