-

CSE 303:
Concepts and Tools for Software Development

Hal Perkins
Autumn 2008
Lecture 12— C: The Rest of the C Preprocessor

~

CSE303 Autumn 2008, Lecture 12 1

/VVhere are We

Previously we looked at the basics of #include and #define

Time to go back and look at the preprocessor in more detail
(particularly handling multiple source files and headers)

CSE303 Autumn 2008, Lecture 12

ﬂl’he compilation picture

Editor

Preprocessor Preprocessed Compiler
C file '
ﬁxecutable)|‘7 Linker 41 .ofile

gcc does all this for you

o

e -E to only preprocess, put result on stdout (rare)

e —c to stop with .o (common; for part of a program)

CSE303 Autumn 2008, Lecture 12

/I\/Iore about multiple files

Editor
| |
l cfile [Preprocessor Preprocessed l Compiler
! C file !
| |

‘ Executable i‘_ Linker "‘Fi)l;___r:j

Typical usage:
e Preprocessor #include to get a file describing code)

e Linker is passed your .o and other code
— By default, the “standard C library”

— Other .0 and .a files

QVhoIe lecture on the linker and libraries later.

CSE303 Autumn 2008, Lecture 12

ﬂl’he Preprocessr

Rewrites your . c file before the compiler gets at the code.
e Lines starting with # tell it what to do.

Can do crazy things (please don't); uncrazy things are:
1. Including contents of header files (see previous slide)

2. Defining constants and parameterized macros
(textual-replacements)

e Actually token-based (to be explained)

e Easy to misdefine and misuse

3. Conditional compilation
e Include/exclude part of a file

e Example uses: code for debugging, code for some computers,

\\ “the trick” for including header files only once

/

CSE303 Autumn 2008, Lecture 12 5

/File inclusion (Review) \

#include <foo.h>

e Search for file foo.h in “system include directories” (on attu
/usr/include and subdirs) for foo.h and include its
preprocessed contents (recursion!) at this place.

— Typically lots of nested includes, so result is a mess nobody
looks at.

— Idea is simple: declaration for fgets is in stdio.h (use man for
what file to include)

e #include "foo.h" the same but first look in current directory.

— How you break your program into smaller files and still make
calls to other files.

e gcc -I dirl -I dir2 ... look in these directories for all
\\ header files first (keeps paths out of your code files). /

CSE303 Autumn 2008, Lecture 12 6

/Conventions \

Conventions to always follow:

1. Give included files names ending in .h; only include these header
files. Never include a .c source file.

2. Do not put functions in a header file; only struct definitions,
prototypes, and other includes.

3. Do all your #include at the beginning of a file.

4. For header file foo.h start it with:

#ifndef FOO_H
#define FOO_H

and end it with:
#tendif

\\ (We will learn why soon.) /

CSE303 Autumn 2008, Lecture 12 7

/Simple macros (Review) \

#define M_PI 3.14 // capitals a convention to avoid problems

#define DEBUG_LEVEL 1
#define NULL O // already in standard library
Replace all matching tokens in the rest of the file

e Knows where “words” start and end (unlike sed)

e Has no notion of scope (unlike C compiler)

e (Rare: can shadow with another #define or use #undef)

#define foo 17
void £() {
int food = foo; // becomes int food = 17 (ok)
int foo = 9+foo+foo; // becomes int 17 = 9+17+17 (nonsense)
\Z %

CSE303 Autumn 2008, Lecture 12 8

//RﬂacrOS‘mﬁth parameters ﬁ\\\

#define TWICE_AWFUL(x) x*2
#define TWICE_BAD(x) ((x)+(x))
#define TWICE _OK(x) ((x)x*2)

double twice(double x) { return x+x; } // my preference

Replace all matching “calls” with “body” but with text of arguments
where the formals are.

Gotchas (understand why!):
o y=3; z=4; w=TWICE_AWFUL(y+z);
o y=7; z=TWICE_BAD(++y); z=TWICE_BAD(y++);

Common misperception: Macros a good idea to avoid performance
overhead of a function call.

Macros can be more flexible though (TWICE_OK works on ints and

\ioubles without conversions (which could round)) /

CSE303 Autumn 2008, Lecture 12 9

/Justifiable uses \

Parameterized macros are generally to be avoided (use functions), but

there are things functions cannot do:

#define NEW_T(t,cnt) ((t*)malloc((cnt)x*sizeof(t))

#define PRINT(x) printf("%s:%d %s\n",__FILE__,__LINE__,x)

CSE303 Autumn 2008, Lecture 12 10

/Conditional compilation \

#ifdef FOO (matching #endif later in file)

#ifndef FOO (matching #endif later in file)
#if FOO > 2 (matching #endif later in file)
(You can alse have a #else inbetween somewhere.)

Simple use: #ifdef DEBUG // do following only when debugging

printf(...);
#endif
Fancier: #ifdef DEBUG // use DBG_PRINT for debugging-prints
#define DBG_PRINT(x) printf("%s",x)
#else
#define DBG_PRINT(x) // replace with nothing
#endif

\\Note: gcc -D FOO makes FOO “defined” /

CSE303 Autumn 2008, Lecture 12 11

/Back to header files \

Now we know what this means:

#ifndef SOME_HEADER_H
#define SOME_HEADER_H

. rest of some_header.h ...
#endif

Assuming nobody else defines SOME_HEADER_H (convention), the first
#include "some_header.h" will do the define and include the rest

of the file, but the second will skip everything.
e More efficient than copying the prototypes over and over again.

e In presence of circular includes, necessary to avoid “creating” an

infinitely large result of preprocessing.

So we always do this. /

CSE303 Autumn 2008, Lecture 12 12

/C preprocessor summary

~

A few easy to abuse features and a bunch of conventions (for
overcoming C's limitations).

e #include (cycles fine with “the trick”, the way you say what

other definitions you need)

e #define (avoids magic constants, parameterized macros have a

few justifiable uses, token-based text replacement)

o #if... (for showing the compiler less code)

CSE303 Autumn 2008, Lecture 12

13

