
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Autumn 2008

Lecture 11— C: casts, lists

CSE303 Autumn 2008, Lecture 11 1

'

&

$

%

Where are We

We have learned most of the important stuff with C, so now we will

more toward idioms and larger programs.

• Today: casts, linked lists

• Next: Rest of the C pre-processor (stuff starting with #)

• Then: Post-overview, more programming tools (make)

Next Wednesday: Midterm in class

Later: 2 lectures on C++ (48 less than necessary)

I highly recommend understanding the code posted with this lecture;

there is far too much to do that “on-the-fly” in the time we have.

CSE303 Autumn 2008, Lecture 11 2

'

&

$

%

The C types

There are an infinite number of types in C, but only a few ways to

make them:

• char, int, double, etc. (many more such as unsigned int)

• void (a type no expression can have)

• struct T where there is already a declaration for that struct type.

• Array types (basically only for stack arrays and struct fields, every

use is automatically converted to a pointer type)

• t* where t is a type

• union T, enum E (later, maybe)

• function-pointer types (later)

• typedefs (just expand to their definition)

CSE303 Autumn 2008, Lecture 11 3

'

&

$

%

Casts, part 1

Syntax: (t)e where t is a type and e is an expression (same as Java).

Semantics: It depends.

• If e is a numeric type and t is a numeric type, this is a conversion.

– To wider type, get same value

– To narrower type, may not (will get mod)

– From floating-point to integral, will round (may overflow)

– From integral to floating-point, may round (but int to double

won’t round on most machines)

Note: Java is the same without the “most machines” part.

Note: Lots of implicit conversions such as in function calls.

Bottom Line: Conversions involve “real” operations; (double)3 is a

very different bit pattern than (int)3.

CSE303 Autumn 2008, Lecture 11 4

'

&

$

%

Casts, part 2

• If e has type t1*, then (t2*)e is a (pointer) cast.

– You still have the same pointer (index into the address space).

– Nothing “happens” at run-time.

– You are just “getting around” the type system, making it easy

to write any bits anywhere you want.

– Old example: malloc has return type void*.

void evil(int **p, int x) {

int * q = (int*)p;

*q = x;
}

void f(int **p) {

evil(p,345);

**p = 17; // writes 17 to address 345 (HYCSBWK)

}
Note: The C standard is more picky than we suggest, but few people know that and little code obeys the official rules.

CSE303 Autumn 2008, Lecture 11 5

'

&

$

%

Pointer casts continued

Questions worth answering:

• How does this compare to Java’s casts?

– Unsafe, unchecked

– Otherwise more similar than it seems

• When should you use pointer casts in C?

– For “generic” libraries (malloc, linked lists, swapping any two

pointers, etc.)

– For “subtyping” (later)

• What about other casts?

– Casts to/from struct types are compile-time errors.

CSE303 Autumn 2008, Lecture 11 6

'

&

$

%

Java casts

Java casts (e.g., (Foo)e) explained to C programmers:

• e evaluates to a pointer to an object.

• Objects have “secret fields” at run-time indicating their class.

• If the object’s secret field is Foo or a (transitive) subclass of Foo

“succeed”. Else raise an exception. (Called a downcast)

• If e’s (compile-time) type is a (transitive) subtype of Foo, then

the compiler can “omit the check”. (Called an upcast)

• If e’s (compile-time) type is neither a (transitive) subtype nor

supertype of Foo, it is a compile-time error. (The cast could never

succeed.)

CSE303 Autumn 2008, Lecture 11 7

'

&

$

%

Linked lists

Linked lists are a very common data structure.

Building them in C:

• Gives practice with pointers, structs, malloc, etc.

• Leads to using casts for “generic” types.

• Shows memory management problems if lists “share tails”.

• Shows the trade-offs between lists and arrays.

See the code! Understand the code!

CSE303 Autumn 2008, Lecture 11 8

