CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2007
Lecture 9 — Arrays and Strings

About hw3 and hw4

* Assignments 3 and 4 are the most difficult
assignments this quarter

* Programming in C takes longer than programming in
Java because debugging is more difficult

- Debugging is an important skill to acquire
- The only way to learn is really to spend the time

* Please start early and plan to spend time debugging

* Always write as little code as possible and test often

Where We Are

* Previous two lectures

— Introduction to C and pointers
* Today

- Arrays

- Strings

- Command line arguments

* An array is a “group of memory locations related by
the fact that they all have the same name and the

e arrangement)

same type” Stack
* Example: (one possib
lnt i; i 3
int c[3]; c[2] o
I nt | =23; 1

C 0

for (i=0; i<3; i++) { -

c[i1=0 el
| j 23

|

Increasing
addresses

Arrays in C

* Elements of an array

- Are a set of ordered data items

- Occupy contiguous memory locations

* Checking array bounds

ne compiler does not check array bounds
nere are no runtime checks either

ne program must explicitly remember the array size

and must check bounds

- Array out-of-bounds errors can often go undetected
for a long time!

Pointer Arithmetics

int c[3];
for (i=0; i<3; i++) {
printf(“%\n”, c[i]);

printf(“%l\n”, *(c+i)); cl2] o
} N C+2
cllf o
c+1
c[0] O
I C

Array name corresponds to address of start of array

Example: si npl e-array. c

Example 1

c[O]

c[8]

0

1

2

3

4

5

6

/

8

= 13:
= 42;
p = &c[4];

54:

64

<+ O

<+ O

13

42

54

64

Example 2

c[O] c[8]

c 01 2 3 4 5 6 7 8

Nt 1I;
for (1 =0; 1 <=8; 1++) {
c[i] =c[iI] + 10;

Example 3

C

Nt |

c[O]

c[8]

0

1

2

3

4

5

6

/

8

for (1 = 0;
*(c+1) = *(c+1) + 10;

C

|

c+1

|

| <= 8:

Cc+3

|

| ++) {

10

11

12

13

14

15

16

17

18

Example 4

C

c[O]

c[8]

0

1

2

3

4

5

6

/

8

I Nt *p;

for (p = c;

*P = *p + 10;

< N

p <= c+8; p++) {

C+8

10

11

12

13

14

15

16

17

18

See arr ay. c to experiment with examples 1 through 4

Passing Arrays to Functions

// To pass array to function
[/ Indicate nane Wt hout brackets
nodi fy(c, si ze);

[/ Function definition is then

void nodify(int c[], 1nt size) {
/] Nodification visible to caller
c[i] = 3;

Passing Arrays to Functions

Because the array name is the address of the
beginning of the array, the following is also allowed:

voild nmodify(int *c, 1nt size) {

[/ NMNodification visible to caller
cl[i] = 3;

Also see arr ay. c for simple examples

Multi-Dimensional Arrays

Rows Columns

a

Int c[2]]3];

int i,j;

for (i =0; i <2; i++) {
for (j =0, j <3 j++) {
c[i][j] = O;
}
}

Passing Multi-Dimensional

Arrays to Functions

void nmodify(int rows, Int cols,
Int c[][cols]) {
c[2][3] = 3;
}

* Compiler needs to find address of element given
subscripts

* So compiler needs to know nb columns per row

Example: multi-array.c

* A string is an array of characters plus a
special string termination character called the
null character

* Null character

- Denoted with \0'
— Character with ASCII value 0

* Size of array must include space for \0'
* We can do same operations as on array!
* Common bug: overwrite \0'

Declaring and Initializing Strings

Int max_ | ength = 20;

char str|max | ength];

/| Copy the string “Hel | o worl d” into str

/| We must make sure that st r has enough room
strncpy(str,"Hello world", max _| engt h);
printf("str 1s %", str);

Declaring and Initializing Strings

char str[{] = "Hello world";
printf("str 1s %", str);
[/ WIIl print: Hello world

char str[20] = "Hello worl d";
printf("str Iis %", str);
[/ WII print: Hello world

Standard C Library (string.h)

Various utility functions to operate on strings (p. 470)
char s1[20] = “blue 7;
char s2[] = “gray”;

[/ Appends2 tosl

/| We must make sure s1 has enough room
strcat(sl, s2);

/| | Betterto use st rncat (see hw3)

/| Compare sl and s2
I Nt conparison = strcnp(sl, s2);

[/ Can also use strncnp

Array of Pointers

char* s[3] ={ “Hello”, “World”, “!” };

S[Z] o—" l!l |\O|
S[]_] ._——» |W| lol lrl |I| ldl I\Ol
s[0] @— H e T T 'o |\O|

Command-Line Arguments

Int main (int argc, char** argv) {
printf(“Prog nanme: %“, argv[O0]),;
nt 1;
for (i =1, | < argc; i++) {
printf(“Next arg 1s %", argv|[i]);
}
}

[/ Can al so use
Int main (int argc, char* argv|[]) {

}

Readings

Programming in C
* Chapter 7 “Working with Arrays”
* Chapter 8, Section “Functions and Arrays” (pp 137-152)

* Chapter 10 “Character Strings”

* Chapter 11 “Pointers”
- Section on “Pointers and Arrays” (pp 259-273)

