CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2007
Lecture 8 — Program structure, expressions,
dangling pointers, printf/scanf

Question about Message Board

* How to distinguish TA/Prof answers from student
answers? Our names appear as:

— Jason Shane Kivlighn
- |OANNIS GIOTIS
- Magda Balazinska

Where We Are

e Last time

- Memory model for a process and the stack
- Simple programs and introduction to pointers

* Today
- Structure of a program, variable scope & storage
- Passing arguments to functions

- Left vs right expressions
- Dangling pointers and NULL value

- Formatted input and output

Structure of a C Program

/[l First include all header files (nore | ater)

#1 ncl ude <stdi o. h>

/| | Decl are gl obal variables (try to avoid them

I nt gl obal int;
// Function nust be defined before it Is used
/] Use function prototypes i1f needed

void ny function(int a, int b) { ... }

int main() { ... }

Storage Duration and Scope

* Scope

- Global variables can be used in any function that
follows their declaration

- Local variables can only be used in the block where
they are defined

* Storage class (lifetime)

- Global vars exist for the duration of the program

- Local vars exist while the block where they are
defined is active

— Static local vars retain their value between
Invocations

Passing Arguments to Functions

* |[n C, arguments are always passed by value

- Function receives a copy of the argument
- Changes to this copy will not affect original
* What if we want to modify argument?
- Use pointers
» Example: scope. c

* Note: In C++, arguments can also be passed by
reference (more later)

Passing Arguments to Functions

void main() { void main() {
Int 1 = 3; Int 1 = 3;
func(i); func(&); V\
} }
Activation record for func Activation record for func
Return address Return address
Info for returned val Info for returned val

3 OxFFFAACF4 @&~

Left vs right

* To “really get C”, it helps to understand the
difference between the left side and the right side of
an assignment

- Law #1: Left-expressions evaluated to locations
(addresses)

- Law #2: Right expressions evaluated to values
- Law #2: Values include addresses

* Examples
Int x = 3; 3
int *p: Oxbft825d1
Oxbff825d1

p = &; Oxbft825cD >

Left vs Right (continued)

* Key difference is the “rule” for variables

- As left-expression, a variable is a location and we
are done

- As right-expression, a variable gets evaluated to the
content of its location and then we are done

* Note: this is true in Java as well

Examples Left vs Right

* Examples
Int x = 3;
I nt vy; 3
int *p: Oxbff825d1 XX
int *q; Oxbft825cd =
Oxbff825d1
p = &X; Oxbff825¢c9
9 =P Oxbff825¢c5 >
q = &,

O T < X

Examples Left vs Right

* Examples
Int x = 3;
I nt vy; 3
int *p: Oxbff825d1 XX
int *q; Oxbft825cd =
Oxbff825d1
p = &X; Oxbff825¢c9
— h Oxbff825d1
9 =P Oxbff825¢c5 >
q = &,

O T < X

Examples Left vs Right

* Examples
Nt X =

I nt vy;
I nt *p;
I nt *(;
p = &X;
q =P,
q = &,

3;

3

Oxbff825d1

XXX

Oxbft825cd ~

Oxbff825d1

Oxbff825¢c9

Oxbff825cd

Oxbff825¢c5

O T < X

Examples Left vs Right

* Examples
Nt X =

I nt vy;
I nt *p;
I nt *(;
p = &X;
q =P,
q = &,

3;

3

Oxbff825d1

3

Oxbft825cd ~

Oxbff825d1

Oxbff825¢c9

Oxbff825cd

Oxbff825¢c5

O T < X

Pointers to pointers

Il nt 1 =2;
Int *pl;
pl = & ;
Nt **p2;
p2 = &pl;
Nt ***p3;
p3 = &p2;
**p2 = 5;
***p3 = 10;

2

Oxbff825d1

Oxbff825d1

Oxbff825cd >

Oxbff825cd

Oxbff825c9 —*
Oxbff825¢c5 »

Oxbff825c9

printf("Value is %\ n", ***p3);

NULL Value

* The value of a pointer is an address
* A pointer can also hold the value 0 or NULL
* A pointer with the value NULL points to nothing

* NULL is a symbolic constant defined in st ddef . h
(included by st di 0. h)

e Example: nul | -pointer.c

A Note About Boolean Type

* In C, any integer type may be used to represent a
boolean value

- Anything but 0 (or NULL) is true
- 0 and NULL are false

* C99 introduces an “extended integer” type named
bool and boolean values true and false (you must
include st dbool . h)

e Example: bool . c

Dangling Pointers

Pointer initialized to address of piece of data

Storage for data is reclaimed because

- Lifetime of variable ends
- Or explicitly deallocated (when using the heap)
The pointer is left “dangling”

- Points to undefined location
If you're lucky... result will be KABOOM!!

Frequently, causes subtle and silent bugs!

Example: dangling. c

Formatted Input and Output

* What we already know

- Input and output is performed with streams
- Streams are just sequences of bytes

- stdin connected to keyboard

- stdout and stderr connected to screen

* Formatted output: printf
* Formatted input; scanf

Formatted Input and Output

e printf(“format string”,
e scanf(“format string”,

* Basic formats
- %d: int
- %f: float, double
- %cC: char
- %s: char* (strings)
- %e: scientific notation

e Examples: format. c

vl1,
vl1,

V2,

V2,

o)
)

* Programming in C
- Skim Chapters 4, 5, 6, and 8
— Chapter 11 Pointers and Functions (pp 254-259)
— Chapter 16 Formatted I/O (pp 348-359)

