
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Winter 2007

Guest Lecture

Dan Grossman CSE303 Winter 2007 Guest Lecture

'

&

$

%

Today

• Quickly finish up a couple bash programming features you need for

homework 1.

• Today: Specifying string patterns for many utilities, particularly

grep and sed.

– Will use only grep (and egrep) today.

– Only finding (vs. finding-and-replacing)

Dan Grossman CSE303 Winter 2007 Guest Lecture

'

&

$

%

Bash command-line arguments

When you run a bash script, you can pass it arguments:

• Third argument in variable 3 (i.e., get it via $3)

• $0 holds the script name (from the caller’s perspective)

• $# is the total number of arguments

See arguments.sh for examples.

Dan Grossman CSE303 Winter 2007 Guest Lecture

'

&

$

%

Bash tests

Can test arithmetic facts (e.g., “at least 3 arguments”) and file-system

facts (e.g., “is blah a directory”)

Many different operators; look them up.

To get a zero or a one, put test in brackets with spaces around them.

Typically used with a conditional command.

• [$# -gt 0]

• [-f foo]

See example1.sh for examples.

See Pocket Guide pp. 168–171 (and, or, ...)

Dan Grossman CSE303 Winter 2007 Guest Lecture

'

&

$

%

Globbing vs. Regular Expressions vs. ...

“Globbing” refers to filename expansion characters.

“Regular expressions” are a different but overlapping set of rules for

specifying patterns to programs like grep. (Sometimes called “pattern

matching”.)

More distinctions:

• Regular expressions a la CSE322

• “Regular expressions” in grep

• “Regular expressions” in egrep (same as grep -E)

• More subtle distinctions per program...

Dan Grossman CSE303 Winter 2007 Guest Lecture

'

&

$

%

Real Regular Expressions

Some of the crispest, elegant, most useful CS theory out there.

What computer scientists know and ill-educated hackers don’t (to

their detriment).

A regular expression p may “match” a string s. If p =

• a, b, ... matches the single character

• p1p2, ... if we can write s as s1s2, p1 matches s1, p2 matches

s2.

• p1|p2, ... if p1 matches s or p2 matches s (in egrep, for grep

use \|)

• p1∗, if there is an i ≥ 0 such that p1 . . . p1︸ ︷︷ ︸
i

matches s.

(for i = 0, matchines the zero-character string).

Lots of examples with egrep.

Dan Grossman CSE303 Winter 2007 Guest Lecture

'

&

$

%

Why this language?

Amazing facts (see 322):

• Exactly the patterns that can be found by a program that can say

before it sees its input how much space it needs. (Decide if a 1GB

string has a substring that matches...)

• You can write a program that takes two regular expressions and

decides if one matches every string the other does.

• ... see CSE322

Dan Grossman CSE303 Winter 2007 Guest Lecture

'

&

$

%

Conveniences

Lots of “conveniences” do not make the language any more powerful:

• p1+ is just p1p1∗

• p1? is just (|p1)

• [zd-h] is just z | d | e | f | g | h

• [^A-Z] and . are long but technically just conveniences.

• p1{n} is just p1 . . . p1︸ ︷︷ ︸
n

• p1{n,} is just p1 . . . p1︸ ︷︷ ︸
n

p1∗

• p1{n, m} is just p1 . . . p1︸ ︷︷ ︸
n

p1? . . . p1?︸ ︷︷ ︸
m

Dan Grossman CSE303 Winter 2007 Guest Lecture

'

&

$

%

Beginning and end

Really grep is matching each line against .*p.*.

You can say that is not what you want with ^ (beginning) and $ (end)

or both (match whole line exactly).

I can’t think of a good reason to put these characters in the middle of

a pattern, but you can.

Fundamentally, we are still in the realm of “real” regular expressions.

Dan Grossman CSE303 Winter 2007 Guest Lecture

'

&

$

%

Nasty gotchas

• Special characters for one program not special for another.

• For example, I found \{ for grep but { for egrep.

• Must quote your patterns so the shell does not muck with them –

and use single quotes if they contain $.

• Must escape special characters with \ if you need them literally:

\. and . are very different.

– But inside [] less quoting (so backslash becomes literal)!

Dan Grossman CSE303 Winter 2007 Guest Lecture

'

&

$

%

Previous matches

• Up to 9 times in a pattern, you can group with (p) and refer to

the matched text later! (Need backslashes in sed.)

• You can refer to the text (most recently) matched by the nth one

with \n.

• Simple example: double-words ^\([a-zA-Z]*\)\1$

• You cannot do this with regular expressions; the program must

keep the previous strings.

– Especially useful with sed because of substitutions.

Dan Grossman CSE303 Winter 2007 Guest Lecture

