CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2007

Lecture 3 —I/O Redirection, Shell Scripts

Announcement

* Guest lecture by Prof. Dan Grossman

- This Wednesday
- About a very useful program called grep

- And also about regular expressions

Where We Are

Last week

* A simple view of the system: files, users, processes, shell
* Lots of small useful programs; more to come

Today

* Finish talking about expansions and aliases

* |ntroduction to emacs

* |nput/Output redirection
* Combining commands

* Shell scripts

File Metacharacters

* The shell performs various expansions and
substitutions before invoking a program

e Example:ls -1 *. txt

* Why file metacharacters?

— On the command line: save typing
- Inside scripts: flexibility (ex: email all pictures)

Expansions

* Brace expansion
- Example: nkdi r hwl/ {ol d, new, t est}
- Creates: hwl/ ol d, hwl/ new, hwl/t est

* Tilde expansion (expansion of ~ character)
- Home directory of user bob: ~bob

- Current user's home directory: ~
* Filename expansion: *, ?, |

- Replace pattern with list of matching file names

Pattern Matching

* Any string, including null string: *

* Any single character: ?
* Any character from set: []
- Example [abc] or [a-c]
* Any character notin set: [! abc] [”abc]
e Special case: “. ” at beginning of a file name

* Examples:
- v nytaxes*19* very-old
- nmv nytaxes*200[0-4]* ol d

Examples

Directory contains:

abcdef abcXdef abcXXdef
> 1ls abc*def

abcdef abcXdef abcXXdet
> 1ls abc?detf

abcXdef abcYdef

> 1s [!zC]~*

abcdef abcXdef abceXXdetf

abcYdef

abcYdef

abcYdef

CVS

222727

Special Characters

How to use them without special meaning?
 Escape: \ x takes following character, x, literally
* Single quotes: ' xxx"' take everything literally

 Double quotes: “xxx" take everything literally
except $, ~ ~ (for command subst.), and \ if

followed by special character

* Rules on what to escape or quote are arcane

- When in doubt, just give it a try

Quoting and Escaping Examples

Directory contains three files: a. t xt , a*.txt, a?*.txt
> 1s a*.txt

a7?*.txt a.txt a*.txt

> 1s a*.txt

ar*.txt

> 1s a\?*.txt

a?*.txt

> 1ls *a?*.txt” Orls 'a?*.txt'

a?*.txt

History Expansion

* The hi st ory builtin

* The ! special character

- I'l' Last command

- I'n Last command starting with letter n

* Speed and convenience for power users

Aliases

* Shorthand for frequently used commands
- Usually put them in your ~/ .bashrc

* Different from variables

* Syntax
- Define alias: alias 1s="1s —--color”

- View alias: alias 1s

- Remove alias: unalias 1s

Introduction to emacs

* A programmable, extensible text editor, with
lots of goodies for programmers

* Not a full-blown IDE

* Much “heavier weight” than vi

Basic Emacs Commands

C-x Cf: openfile

C-x 5 f:open file in new window
C-x C-s:save

C-x G w save as

C-x Cc: exit

C- x b: switch to another buffer

C- g: cancel partially typed command

Additional Useful Commands

e C-k: cutline

 C-y: paste line

* M/ : auto-complete (Mmeans ESC key)
e C-x 2:splitframeintwo (C-x 0)

* Fancier copy-paste exists

* Many fancy commands: auto-indent,
comment-region or uncomment-region

* Color customization: “Customizing Faces”

Command Line Editing

* Can use a lot of same commands as emacs
* More info in the Linux Pocket Guide (p28)

* Note: you will not be evaluated on command
line editing. It's just for you.

Program Inputs and Outputs

* What we already know...

* Program takes array of strings as argument
- Some of these arguments can be options
* Program returns an integer

— Convention: 0 for success, non-zero for failure
- Previous command's exist status is in $?

Program Inputs and Outputs

* The shell also sets up 3 “streams” of data for
the program

* stdin is an input stream with file descriptor 0
- Standard input, default keyboard

* stdout is an output stream with file descriptor 1
- Standard output, default shell window

* stderr is an output stream with file descriptor 2

- Standard error, default shell window
- Normally used for error messages

Input/Output Redirection

* Using special characters we can tell the shell
to use files instead of the keyboard and
screen (online Bash manual section 3.6)

e Redirectinput:cnd < file

* Redirect output, overwrite file:cnd > file
* Redirect output, append file:cnd >> file
* Redirect error output: cnd 2> file
 Redirect both stdout, stderr: cnd &> fil e

/O Redirection Examples

Sample commands (output not shown)

man 1ls > manual-page.txt

man idonotexit > manual-page.txt

man il1donotexit 2> manual-page.txt

man 1ls > manual-page.txt 2>&1

man 1l1donotexist > manual-page.txt 2>&1
man ls &> manual-page.txt

man ls >> manual-page.tXxt

history > my-history

cndl | cnd2

* Change the stdout of cmd1 and the stdin of
cmd?2 to be the same new stream

* Very powerful idea

— Can combine many small programs into more
complex programs!

-wc —help | less
- history | grep nan

Combining Commands

e cndl; cnd2 (sequence)
ecndl || cnd2 (or)

- Using the integer return value (“exist status”)

e cndl && cnd2 (and)
e cnNdl cnd2

- Use output of cmd2 as argument for cmd1
- nkdir ~whoam
- echo date

Next Step: Shell Scripts

* Series of individual commands combined into
one executable file form a shell script

* Shell is an interpreter for a programming
language of the same name

- Variab
- Some

es

nrog. constructs: conditional, loops, ...

- Integer arithmetic

- elcC.

Writing a Script

 Make the first line exactly: #! / bi n/ bash

- Indicates the command interpreter to be used

- You need it as soon as you start using any bash-
specific constructs

* Type your other commands

e Example: file trivial. sh contains two lines
#!/bin/bash

echo “Hello world”

Executing a Script (3 methods)

* Start a new shell, execute within that shell
chmod u+x my_script.sh

./ my_script.sh

* Start a new shell, execute within that shell
bash nmy _script.sh

* Execute within current shell
source ny_script.sh

- All variables defined in my_script.sh now defined
in the invoking shell (see variable.sh)

Example

* File trivial.sh contains two lines
#!/bin/bash

echo “Hello world”

* Now to execute the script
> chmod u+x trivial.sh
> ./trivial.sh

* Note that we used “./trivial.sh” instead of “trivial.sh” to
tell the shell to look in the current directory for trivial.sh

* |nstead, we could also have modified our PATH
environment variable to include “.” (we will do that later)

Writing to stdout or stderr

* By default, output goes to stdout
#!/bin/bash

echo “Hello world”

* Can also send it to sderr
#! /bin/bash
echo “Hello world” > &2

Shell Variables

* Assignment using equals sign without spaces
-1 =42
- g="What I1s the answer”

* Preface a variable by a dollar sign ($) to
reference its value

- echo $q i
- a="The answer is $i”

* Optionally, enclose in braces
- a2="The answers are ${i}s”

Example 2

> chmod u+x variable.sh
> ./variable.sh

Hello World

Value of MYVAR 1s 3

> echo SMYVAR

// nothing is output

Example 2 (b)

> source variable.sh
Hello World
Value of MYVAR 1s 3

> echo SMYVAR

3 // value 3 is output

Accessing Arguments

e $i is the value of the i"" argument

e $0 is the name of the program
e $# is the total number of arguments

* Testing the number of arguments received
if [$# -1t 1]
t hen

fi

More About Conditions

* t est command, with [as special alias

— Must put spaces around [and]
— String tests (limited): [aabb = aabb]
- Numerictests:[1 -1t 5]
- File tests (very common): [-e my-file]
- Logic with -a or - 0
eeg., [-f $1 -0 -d $1]
- Logic with && or ||
eeqg.,[-f $1 1 || [-d $1]
* More info: Linux Pocket Guide (pp 168-171)

* What we covered today

- |/O redirection, pipes, combining commands
— Introduction to writing scripts

* Arguments, variables, printing, manipulating files
- Emacs

* Content of lectures 1 through 3 is enough to
complete first assignment

* You have all the information. Assignment 1
helps you practice and review

* Class website: pointer to online Emacs
manual is in the “Resources” section

* Section from the Linux Pocket Guide

- Programming with Shell Scripts (pages 166-178)
- Selected bash features (pages 21-29)

