CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2007
Lecture 19 — C++: Templates and STL
Tools: Version control

Where We Are

* We are almost done talking about C++

- Still need to talk about templates and STL
* So what are we going to do for the rest of the quarter?

- More tools: version control (today)
- Software engineering basics

* Unit testing, stubs, specifications
* Writing robust and readable code
- Societal implications

- A few extra things: threads and (maybe) profilers

Introduction to Templates

* Motivation: often want to perform the same
operations on different data types

* Example: storing data in a linked list

- Solution 1: Create a new list class for each data type
we want to store in a list

- Solution 2: Force all data types to have a common
ancestor X and create a list of X (Java solution)

- Solution 3: Create a generic list class, and have the
compiler use that generic class as a template to
generate code for all the list classes we need

* Note: this is DIFFERENT from Java generics

C++ Templates Basic Idea

* With a single code segment, define a whole group
of related functions or classes

* From the template, the compiler generates the
code for all actual functions or classes

- C++ templates are said to be implemented “by
expansion”

* The generated code is then compiled

Syntax for Class Templates

e Class definition in . h file

tenplate < class T >

class Myd ass {
/]| Here use T |like ordinary type
bool test(T item;

'

 Function definitions in the . cc file

tenplate < class T >
bool Myd ass<T>::test(T item {
/|l here use T Ii1ke ordinary type

'

Syntax for Using Class Templates

MyCl ass<i nt > exanmpl el;
exanpl el. test(3);

MyCl ass<char > exanpl e2;

exanpl e2. test('b');

* Full example in file t enpl at e. cc

Standard Template Library

* C++ library of:

- Basic data structures (i.e., container classes)
* Lists, Maps, Sets, etc.

- lterators for traversing these containers
* [terators are a generalization of pointers

- And basic algorithms to operate over various
containers: sort, reverse, etc.

* Algorithms are decoupled from specific containers
* They are templates parameterized by the type of iterator

* We will only consider two concrete examples

- |'i st inlecture and map in assignment

Example: List of Integers

#1 ncl ude <list>

[...]

list<int> ny |ist,;

for (int i =0; i < 10; i++) {
ny |ist.push _back(i);

!

list<int>:.:const Iterator 1I;
for (1 = ny_list.begin();
I I'=ny list.end(); ++1) {
cout << “Elenent I1s “ << (*1) << endl;

}
e Other example in file nai n. cc

Java Generics

* Very different from C++ templates and STL

- Ex: generic collections classes are based on std Java
collections classes where everything is a container of Objects

* Java generics are implemented by “type erasure”

— Compiler reads type information
— Compiler performs type checks

- Compiler automatically generates type casts

- Compiler erases any type information

- So the resulting bytecode is the same as without using
generics, but traditional collections classes

* Goalin Java was backward compatibility

No Templates nor STL on Final

* Templates and STL are an advanced topic

* We overview them briefly because they are very
frequently used in C++

* But there will be no question about templates nor
STL on the final

Version Control Systems:

Motivation

* Alice, Bob, and Chuck are working on a large
software system

- Where should they keep their source code?

- What if they want to work on their laptops? from home?
disconnected from the network?

- How should they manage concurrent modifications?

- What if Bob needs to keep the code stable to give a
demo while Chuck would like to try a new idea?

- What if Chuck tries his new idea and breaks the code the
day of the demo?

Version Control System

* Goal of a version control system

- Handle simultaneous concurrent changes

- Manage multiple versions of a system
* Many version control systems exist

- CVS, RCS, Subversion, SourceSafe, ClearCase
* Just like any other tool that we study

- All these tools have similar goals and similar basic
features (but different ways to use these features)

* CVS can manage any files, not just source code

- | use it for everything... including course materials

CVS: Basic Idea

Holds master copy of all files

() Holds old versions of all files
Repository
. J
checkout checkout
checkout
4) 4 +) ()
Alice's Bob's Chuck's
local copy local copy local copy
. J . J . J

Developers should NOT modify the repository directly
Instead, each developer checks out and modifies a working copy

update

r

.

local copy

~
Alice's

W,

CVS: Basic Idea

r

\

Repository

\

Y

commit

r

.

local copy

~\

Bob's

S

Modifies files
Adds files

Adds directories

update

r

.

Chuck's
local copy

~

W,

Basic I[dea Summary

* There exists one CVS repository

- Holds the master copy of all files for all projects
* Each software developer

- Checks-out a local copy of the files for a project

- Modifies the files in the local copy
- Commits his/her changes periodically

- Updates his/her local copy periodically
* To see changes made by other developers
- Adds new files that he/she creates

* Developers use the CVS program to interact with the
repository and perform the operations listed above

What Goes Into CVS

* |n general: keep in repository ONLY what you need
to build the application

- Never add files that are generated automatically
- Yes: .cc, .c, .h, Makefile
- No: .o files or executable

* Think before you add a file to CVS

- Although you can always remove it later if you make
a mistake or if you change your mind

Basic CVS Commands

* Set-up a repository (this is done only once)

cvs -d /dir/of/cvsroot Init

* Add a new project to the repository (once per project)
cvs -d /dir/of/cvsroot Inmport pnane owner tag
* Working on a local copy (frequent commands)
Create local copy: cvs -d /dir/of/cvsroot co pnane
Commit changes: cvs com .
Update local copy: cvs up -d .

Add a new file or directory: cvs add file

Add a binary file (ex image): cvs add -kb file

Log Messages

 Commit messages are mandatory

- -m “short message”
- -F filename-with-long-message
- Else an editor pops up

* Write your message Possible to setup CVS
* Save and quit to send out email

(with the log message)
after each commit

 Default editor: vi

- Press “i 7, write message
- Press “ESC : wgq ENTER®

* You can change the default editor

Other Useful CVS Commands

* Described in CVS documentation
- http://xinbiot.com cvs/w ki /

* Some frequently used commands

- View commit history of a file

- View differences between revisions

- Get version of files as of some date in the past
- Remove a file

- Tag a version of all files

- Create a new branch

- Merge changes between branches

Working with CVS

* Generic structure of a CVS command

cvs cvs-options cnd cnd-options fil enanes/dirnanes

* Environment variables (there are more)

- CVSEDITOR: editor to use for log messages

- CVSROOQOT: location of cvs repository

* | often don't use it and specify -d option when first checking
out a project

- CVS_RSH: must be set to ssh when trying to access
repository remotely

cvs -d login@erver:/dir/of/cvsroot cnd ...

Conflicts

* When many people edit the same files at the same
time, conflicts can occur

* CVS tries to merge changes automatically
- Uses di ff and pat ch
- Merging is line-based
* (- kb prevents cvs from trying to merge changes)
- Conflicts indicated in working copy
e Search for <<<<<
- When in doubt
* Make a copy of your local files before updating!
* Some tools enforce locking but CVS does not

There Is Little Magic to CVS

* The repository just uses directories and files

- Repository must have correct group permissions
* Files are kept in terms of diffs

- So small changes lead to small increase in
repository size

* Files are kept read-only to avoid “mistakes”
- cvs commands temporarily change permissions

* cvs commands also temporarily lock repository

- Locks can stick around if cvs commands are
interrupted, so be careful

- But you can remove left-over locks manually

Summary

* Version control system such as CVS

- One of the key software development tools
- All companies use them!

* Advantages

- Much better than manually emailing files, adding
dates or version numbers to files, etc.

- Handles concurrent changes

- Manages multiple versions

- Remembers old versions

- Useful for software but works on any files!

Readings

* Carefully study the code that accompanies today's
lecture

* Standard Template Library Reference
- http://ww. sgi.comtech/stl/

* Online CVS documentation
- http://xinbiot.com cvs/w ki /

- manpage for cvs is also helpful

