CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2007
Lecture 15 — Tools: linker, build scripts, make

Where We Are

* We are done with Linux, shell scripts, and C

* We are in the middle of learning about tools

- Already completed: preprocessor, debugger
- Today: libraries, linker, and make
- Still to come: cvs, gprof

Goal for Today

* Atthe end of today, you should understand

- The sequence of operations involved in building an
executable and what happens at each step

- The goal of makefiles
- Be comfortable writing simple makefiles

* This is not the end of the story

- Much more to makefiles than what we will show

- After this class, you should also learn about
autoconf and automake

Steps Involved in

Creating a C Program
* Review from last lecture

Editor

] —
l(_c file [Preprocessor -»FDVGPCF:OFIESSECI —» Compiler
ile

l

= ~_
Executable)|‘— Linker <+ .0 filej

Example

* Program composed of two modules
- Queue module: queue. ¢, queue. h
- Main program: mai n- queue. c (uses queue)
e Step 1&2: Preprocess and compile each . c file

- Create queue. o and nai h- queue. 0
- gcc -Wall -g -c queue.c
- gcc -Wall -g -c mal n-queue.c
* Step 3: Link files together to create executable
- gcc -0 nml n nal n-gqueue. 0 gueue. o

Linking Step

* Linker transforms compiled code (.o files)
into executable programs

Editor

v

2
r.c file ™

o]

Preprocessor Preprocessed
C file

—» Compiler

The Goal of the Linker

 Compiled code (. o file) is not “runnable”

* We have to link it with other code to make an
executable

- Where is the code for pri ntf and nal | oc?

- We only included the header files...
- Need to find that code and put it in executable
- That is what the linker does

* Normally, gcc/g++ hides this from you

Linking Overview

* If a C/C++ file uses but does not define a function
(or global variable), then the . o has “undefined

references”

- Note: declarations do not count, only definitions

* Linker takes multiple .o files and “patches them” to
include the references

- Literally moves code and changes instructions like
function calls

e Executable has no unresolved references

e Linkeris called | d, but we will not invoke it directly.
We will use gcc

Static Linking

* Puts all necessary code into executable

- The . o files are no longer needed after linking

 Note: use option - st ati ¢ to also force the use of
static linking for standard libraries

* Example: our queue test program
- gcc -static -0 mal n nai n-gueue. 0 gqueue. o

- (try linking with and without the - st at i ¢ option and
see the difference in size of your executable)

Creating a Static Library

* Create with ar (stands for “archiver”)
-ar rc |1 bdata.a queue.o stack.o

- Creates a static library named | i bdat a. a and puts
copies of object files queue. o and st ack. o in it

- If | i bdat a. a exists, adds or replaces files in it
 |ndex the archive: ranlib |i bdata. a
- Same as running ar with option - s

- Improves performance during linking
- Order inside the archive will no longer matter

Static Linking with Library

* Linking with library | i bdat a. a

gcc
gcc

-0 main nmai n-queue.o -L. -ldata
-static -o main mai n-queue.o -L. -l data

* Gcece will automatically link your executable with

pgcc. a

hc. a for C

st dc++. a for C++

 Compile/link with option - v to see details

Static Linking Step-by-Step

* Begin: “Set of needed undefined functions” empty
* Action for .o file:

- Include code in result

- Remove all defined functions from set
- Add to set all functions used but not yet defined
e Action for .a file: For each .o in order

- If defines a needed function, proceed as above
- Else skip

* End: If set of needed undefined functions empty,
create executable, else error

Library Gotchas

e Position of - | dat a on command-line matters

- Discover and resolve references in order
- So typically list libraries after all object files

* Cycles

- If two . a files need each other, you might need
-1foo -lbar -l1foo ...

* |f you include mat h. h, you'll need -1 m

* Cannot have repeated function names

Summary of Building an Executable

Step2: Create Step3: Link

Stepl: Compile Libraries

Source Files Object Files Static Libraries Executable

queue.c > queue.o

*ibdata.a
stack.c » stack.o \

main-queue.c — »main-queue.o » main

gcc -Cc queue.cC
gcc -c stack.c)
gcc -C mai n-queue. c libc.a”

-1 specifies location of header files 4
ar rcs |libdata.a stack.o gqueue.o

gcc -static -o nmain nalin-queue.o -L. -ldata

libgcc.a /

Dynamic Linking

e Static linking has disadvantages
- More disk space, more memory when programs run
* |nstead can use

— Shared libraries (extension . so)

* Link in when program starts executing
* Saves disk space and memory

- Dynamically linked/loaded libraries (while running)

* To experiment, link nai n with no option or with
-static, or -shared-11 bgcc

- In between commands execute: | dd mai n

- And also check the size of mai n

Linking and Libraries Summary

* Main steps when building executable
- Preprocessing (specific to C)
- Compiling
- Linking
* Process can get complex for large systems
- Definitely don't want to do manually each time
- Would like to automate the process... Makefile

* Know about potential problems. Learn how to solve
them as you encounter them

The Java story

e Compiling: j avac transforms . j ava into . cl ass

- One file at the time: A. j ava, B. j ava, etc.
- Need to find and compile other referenced classes
* CLASSPATH, - cl asspat h, and system defaults

 Running: | ava is just a program that find A. cl ass
and knows what to do

- Interpretation or just-in-time compilation
- But, needs to find other classes too (. cl ass, .jar)

- Load classes lazily when needed during execution
- Jar files are equivalent of libraries

* Two main goals

- Automate the build process with a script

- When a source file changes, rebuild only what is
needed: keep track of dependencies

* Why?
- Do not want to retype long, complex commands

- Easier for others to build the system
- Want to shorten build time

* Especially important for large systems

Recompilation Management

* The “theory” behind avoiding unnecessary
compilation is a “dependency graph”

* To create targett, need

- Sourcess, s s and a command a

21

e Ift newers than all s,, assume no reason to rebuild it

* Otherwise, recursive rebuild

- If s, is itself a target, check if need to rebuild it

- If need to rebuild, use the given command a

Dependency Graph Example

Source Files Object Files Static Libraries Executable

queue.c —
queue.o

queue.h *libdata.a.
stack.c stack.o \

stack.h \

main-queue.c »main-queue.o » main

libgcc.a —
libc.a™

e
y

Basic Idea Behind a Makefile

* Enables us to define targets & dependencies

* |n form of triples: target, source, command(s)

target: sources (aka dependenci es)

conmandl
conmand?2

gueue. 0. Qqueue. c queue.h
gcc -Wall -c queue.c
* Warning: command lines must start with TAB

e |f a command spans multiple lines, use \

* On the command line

make -f nameOf Makefil e target
* Defaults

- If no - f, looks for a file named Makefi | e

- If no target specified, uses first target in the file
* The make utility

- Examines the dependency graph

- Examines the file-modification times

- Recursively decides what to rebuild
- Note: make is language independent (java, c, latex)

Standard Targets

* all: make everything
al | : mal n-queue mail n- st ack

* clean: remove any generated files, to “start over”
and have just the source

cl ean:
rm-f *.0 mal n-gueue nal n-stack

* Phony targets: “all” and “clean” never exist

Variables

* We have seen the basics, now let's get more
sophisticated with our Makefiles

* You can define variables in a Makefile
OBJ = mai n-stack.o stack.o
mai n- st ack: $(0BJ)
gcc -0 nmin-stack $(0BJ)

* Help avoid error-prone duplications

- List of object files
- List of executables
* |n make, variables are often called macros

* Programming in C
- Chapter 15 and Appendix C
* Make/Makefile tutorials

- http://palantir.swarthmore.edu/maxwell/classes/tutorial
s/maketutor/

- http://www.gnu.org/software/make/manual/make.html
- http://www.eng.hawaii.edu/Tutor/Make/

* Extra references: man pages for gcc, ranlib, ar, Id
* In the future (no need to read for this class)

- autoconf/automake: http://www.gnu.org/manual/

