CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2007
Lecture 14 — The C Preprocessor
Tools: introduction to the linker

Where We Are

* After today, we will have covered

- Linux (just an introduction to Linux)
- Shell scripts and utilities
- Programming in C

* This week an in future weeks, we will cover

- Tools
- C++

- Introduction to software engineering

Steps Involved in

Creating a C Program

* Preprocessing occurs before compilation

e Use gcc - E to perform only preprocessing

| ~ — |
\ cfile | Preprocessor Preprocessed | ! Compiler
| C file |
| |

= ~_
Executable)|‘— Linker <+ .0 filej

C Preprocessor

* All preprocessor directives begin with pound sign: #

* Three main uses of C preprocessor

- Include files
- Define symbolic constants and macros
— Compile parts of code conditionally

Preprocessor: Including Files

e The #i ncl ude directive

- Causes a copy of a specified file to be included in
place of the directive

- File is itself preprocessed before being included
e #1 nclude <fil ename>

- Search in pre-defined system include file directories
(these directories are implementation dependent)

- Used for standard libraries
e #I ncl ude “fi |l enane”

- Search in local directory

Compiler -l option

e gcc -1 dir

- Add the directory di r to the list of directories to be
searched for header files

- Directories named by - | are searched before the
standard system include directories

e Example i ncl ude. ¢, incl udeA. h,
header s/ i ncl udeB. h

Preprocessor: Defining Constants

e The #def i ne directive

- Creates symbolic constants and macros
e #define 1 d text

- All subsequent occurrences of i d are replaced with
t ext before program is compiled

o #defi ne BUFFER S| ZE 4096
e #define DEFAULT FILE “output.txt”

e Examples: constant.c

- st dbool . h defines bool ,true, and f al se
- st ddef . h define NULL

Preprocessor: Defining Macros

* A lot like constants, but can take arguments

* During preprocessing

- Step 1: Arguments are substituted

- Step 2: Macro is expanded
e #define SUMX,y) ((x) + (y))

* Then
-int a = SUM 3, 4);
- Becomesint a = ((3) + (4));

e Examples: nmacro. c

More about Macros

* Try to avoid them if you can

- It is better to use functions!
- Your goal: clarity and correctness

- Do not worry about optimization until you know that
something is a bottleneck

* Use them only when truly needed
#defi ne PRI NT(x) \

printf("%: % %\n",
e (_FILE and

constants)

FILE _, LINE ,X);

LI NE__ are predefined symbolic

Preprocessor:

Conditional Constructs

* Preprocessor supports other useful statements
-#1f, #else, #endif, # fdef, etc.
* These statements enable programmers to control

- Execution of preprocessor directives
- Compilation of program code
- By switching various statements on or off

Typical Usage 1

* Ensure header files are included only once
#1 f ndef | NCLUDEA H
#def 1 ne | NCLUDEA H

... content of includeA.h ...
#endi f

* Check if symbolic name is already defined

* |f not, then define it

e Example: i ncl ude2. ¢, includeA. h,
I ncl udeB. h, andi ncl udeC. h

Typical Usage 2

* Conditional compilation
#i f def DEBUG
#define PRINT(x) printf("%”, x);
#el se
#def i1 ne PRI NT(x)
#endi f

e Example: conditional .c

- gcc -D DEBUG conditional.c
- gcc conditional .c

* Other usage: adapt code to architecture, OS

Typical Usage 2 (Example 2)

* Example: f ancy-conditional.c

- gcc -D LOG LEVEL=2 fancy-conditional.c
- gcc -D LOG LEVEL=1 fancy-conditional.c
- gcc fancy-conditional.c

Useful macro: assert (in assert.h)

e Usage: assert (expression)

- If value of expression is true, nothing happens

- If value of expression is false, assert prints an error
message and calls abort

* Especially useful for
- Testing preconditions (example stack not empty)
e Example: assert.c

e Disable asserts by defining NDEBUG
- gcc -D NDEBUG assert.c

machine language code, a.k.a. object code (.o files)

e Use gcc -c to stop after compiling

Editor

Y

Steps Involved in

Creating a C Program

* Compiler transforms source code (.c files) into

<

.c file

—

Preprocessor

__».| Preprocessed

C file

Executable

—T—V

Linker

The Goal of the Linker

e Use option - ¢ to produce the . o file
 Compiled code (. o file) is not “runnable”

* We have to link it with other code to make an
executable

- Where is the code for pri ntf and nal | oc?

- We only included the header files...
- Need to find that code and put it in executable
- That is what the linker does

* Normally, gcc/g++ hides this from you

Steps Involved in

Creating a C Program

* Linker transforms compiled code (.o files) into

executable programs

Editor

<] ~
. file

~—]

Preprocessor > Prepéo]flessed —»1 Compiler
ile

Linking Overview

* If a C/C++ file uses but does not define a function
(or global variable), then the . o has “undefined

references”

- Note: declarations do not count, only definitions

* Linker takes multiple .o files and “patches them” to
include the references

* Executable has no unresolved references

* Linkeris called | d, but we will not invoke it directly.
We will use gcc... more next lecture

* Programming in C
— Chapter 13

- Chapter 18, section on “Debugging with the
preprocessor”

- Appendix C “Compiling prorams with gcc”

* Scheme through the man page for gcc
- man gcc

