CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2007
Lecture 12 — Data Structures and
Memory Management

Assignment 4

Assignment 4 will be released later today
It is the most difficult assignment this quarter
It is the longest assignment this quarter

Suggested schedule

- Work on problems 1, 2, 3, 4, and 6 before Monday
- Focus on the midterm next week
- Finish the assignment after the midterm

This assignment will give you great programming
experience! You will see the difference.

Where We Are

* We have seen

- The concept of a struct
- Dynamic memory allocation (malloc/free)

* Given these two concepts, we can now create
dynamic data structures

- Structures whose size grows and shrinks during
program execution

- Concrete examples today: stack (and queue)
- You will create a list and a tree in assignment 4

Program Modules

* Our program is longer today, so we will split it into
two modules: stack and main-stack

- Such a split will also allows us to reuse the stack
module in different programs

* Overall, we will have three files
- st ack. c: Functions that implement the stack
* push, pop, is_empty, and print
- st ack. h: All the function prototypes
- mai n- st ack. c: A program that uses the stack

* Must include stack.h

Self-Referential Structures

* Contains a pointer to a struct of the same type
t ypedef struct node {

| nt val ue:
struct node *next:
} Node;

* Can contain more than one pointer
- Example: a double-linked list will have 2 pointers

* These pointers are called links
* Typical building block for data structures

* |Let's build the stack and, if we have time, a queue...

Stack Data Structure

Node *top;
Pointer to a Node structure

Node. val ue
\ :

top @ ~3@ 2@ ~1 tj

T/ L 1 NULL
Node. next

One Node
structure

Push an Element onto the Stack

Jhbde.value
2

Eﬂ -]

— NULL
Node. next

®
Y

t op Er]

t op

Push an Element onto the Stack

Node. val ue

J
2

t

—

1

t

I‘Node.next

s

NULL

t op

Pop an Element from the Stack

Node. val ue

J
2

t

—

1

t

I‘Node.next

s

NULL

Writing the Stack Module

* Now that we know how a stack works, let's
take a look at the corresponding C code

Print the Content of a Stack

top @ -3 @ 20 ~1 0
1NULL
voi d print(Node *top) {
Node *current = top;
while (current !'= NULL) {
printf("%\n", current->val ue);

current = current->next,

Create a New Stack

* |nitializing stack: Node *top = NULL;

top ti

Push Data Onto Stack

/] Ci1ent code
Node *top = NULL;
Iint 1 = 3;
push(&t op, 1);

top ti Empty stack

How should we implement the push function?

Push First Data Item Onto Stack

* Step 0: Initial state top Gl Empty stack

* Step 1: Allocate space for a new element

1@ New element

* Step 2: Update pointers to add element to stack

op @ 1 *ﬂ New stack

Push Subsequent Data Item

Onto Stack

* Step 0: Initial state top @ >1 @

* Step 1: Allocate space for a new element

2@ New element

* Step 2: Update pointers to add element to stack

op & -2 6 -1 6 New stack

The “push” Function

voi d push(Node **top, 1 nt value) {

Node *e = (Node*)nal | oc(sizeof (Node));

1t (le) {
fprintf(stderr,"Qut of nenory\n");
return;

}

e->val ue = val ue;

e- >next = *top;

*top = e;

Popping Data From Stack

[/ Client code
Node *top = NULL;
oush(& op, 1);
oush(& op, 2);
oush(& op, 3);

I nt val ue = pop(&t op)

How should we implement the pop function?

Popping Data From Stack

* Pop an element from stack

top ® ~3 @ ~2 @ ~1 ‘j

Step 1

<
top @ 3 »2t41t1

\

Step 2: deallocate

Popping Data From Stack

| nt pop(Node **top) {
1f (! 1s_emty(*top)) {
Node *renoved = *top;
I nt val ue = renoved- >val ue;
*top = renoved- >next;
free(renoved);
return val ue;

}

return -1;

Other Data Structures

* Other data structures in C can be implemented in a
similar manner

* Self-referential structures form the basic elements
* When inserting

- Allocate space for new element (malloc)

- Initialize its fields

- Update pointers
* When removing

- Update pointers

- Reclame space used by deleted element (free)

Additional Example

* The following slides show another data
structure: the queue

* You can find the code for that example in
gueue. c, queue. h, nmai n-gueue.c

Second Example: Queue

* This time we need to keep around two pointers

- head: pointer to the head of the queue
- tail: pointer to the end of the queue

head tail

o o

; :
3@ -2 0 =1 &ﬁv

Enqueue Operation

* Enqueue a value: value = 4

* Step 1: Allocate memory for new element and
initialize fields
New element

4 @
head tail l

o o)

: :
30 20 -1 &ﬁv

Enqueue Operation

* Step 2: Update links to add element to the end
of the queue tail

®
i

head Bl t—i

w< @

Enqueue Operation

* Special case: adding first element to an empty
queue

head tail

IE. 4&1

Enqueue Operation

* Special case: adding first element to an empty

queue
head tail
o ®

_d

Dequeue Operation

* Elements are removed from the head of the

queue

head tail

. °
i i
3

Dequeue Operation

* Step 1: Update links
* Step 2: Deallocate element

head tail
° °
L

Dequeue Operation

* Special case: removing the last element from
a queue

head tail head tail

® o ® o

|
Bl 1

* Source code is in:
- gueue. h queue. c, nal n-qgueue. C

Summary

* Quite easy to build useful structures
* Be systematic

- One method allocates new elements
* Example: enqueue, push
- One method deallocates elements

* Example: dequeue, pop
* Be careful

- Watch-out for corner cases (ex: empty queue)

Frequent Bugs

* Memory leak: forgetting to free memory

- Example: remove element from list, forget to free
it, and lose all pointers to that element

* Dangling pointers
- Can cause crash

— Can cause you to overwrite other data

* Good news: tools exist to help you catch
these bugs: dmalloc, valgrind (we will not
have time to cover these tools in class)

* No additional readings for this class

* Examine the examples carefully

- Pay attention to the parameters
— Either Node * (pointer to a Node)
- Or Node** (pointer to a pointer to a Node)

