CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2007
Lecture 10 — Tools: debuggers (gdb)
C: file 1/O



Tools

We will learn about several tools this quarter

Debuggers: gdb
Build scripts: make
Version control systems: cvs

Profilers: gprof (if time permits at the end)

The concepts behind these tools are orthogonal to
the programming language



Plan for Today

* Today we start to talk about tools

- Debuggers: gdb
* As we talk about gdb, we will also cover

- File 1/O



File Input/Output

* We assume you know about files in general

* We only show you the C syntax
* We examine sequential-access files

- You will need to read a file in assignment 4



Files and Streams

* C views a file as a sequential stream of bytes

- Ends with an end-of-file marker or
- Ends at specific byte number recorded by system

* When you open a file
- A stream is associated with it

* You can use same functions to read from stdin
or write to stdout/stderr as you do for files

- Main functions: fprintf, fscanf, fgets, fputs



Reading/Writing Files

* Opening a file returns a file pointer: FI LE*

e FI LE: struct that contains the file descriptor
- Note: we will learn about structures next time

* File descriptor is index into the open file table
- Used by OS to locate the file control block (FCB)

* Three structs are predefined and preset

- stdin, stdout, stderr



Role of Debugger

* Main goal: Help you understand what is
going on inside a program while it executes

* Debugger monitors execution of a program

* A debugger typically allows you to:

— Start your program with given arguments
- Suspend execution when some condition occurs
- Examine the suspended state of your program

- Sometimes can also change things to see what
happens next



Debugger Variants

* Debuggers come in many forms and flavors
* We will focus on one of them: gdb
* We will examine it in isolation

- But many debuggers are integrated into IDE

* ... ok... time to fix our buggy program...
* Example: debug ne. c



Main Debugging Need in C

* Where did my program crash?
* gdb can tell us, but we need the following:

- Compile code with option - g

- “Produce debugging information in
t he operating systenis native format
(stabs, COFF, XCOFF, or DWARF). GDB
can work with this debuggi ng

i nformati on”. (from gcc's manpage)

- Without that option, the debugger is unable to
provide much useful info except for call stack



Locating a Segmentation Fault

* Approachl: Execute program within gdb
gdb debug ne

... starts debugger... once you get command line:
(gdb) run filel.txt file2.txt

Program recei ved signal SIGSEGY, Segnentation fault.
0x007b1478 in strcnmp () from/lib/tls/libc.so.6

(gdb) where



Locating a Segmentation Fault

(gdb) where
#0 O0x007b1478 in strcnp () from/lib/tls/libc.so.6

#1 0x080485b6 i n compute 1d (nanme=0xbfe3fal00 "book")
at debug ne.c: 18

#2 0x08048644 in read one (ptr=0x88eal008) at
debug _ne.c: 44

#3 0x080486ec in bug (fil ename=0xbff 3053f
"filel.txt") at debug ne.c: 70

#4 0x08048a63 in main (argc=3, argv=0xbfe3fbd4) at
debug_ne. c: 203

(gdb)



Locating a Segmentation Fault

* Approach2: Examine a core file
- Need to set maximum size allowed for core files
ulimt -c 16000
- Run program as usual . / debug_ne
Segnentation fault (core dunped)

- Examine core file with gdb
gdb debug ne core

... wait for gdb to start...
(gdb) where

- Same output as in Approach 1



Suspending the Program

* Place a breakpoint at given line number
gdb debug_ ne
(gdb) break debug ne.c: 16
(gdb) run filel.txt file2.txt

Breakpoint 1, conpute id (nane=0xbff80dd0 "book")
at debug ne.c: 16

16 for (i = 0; i <= nb_products; i++ ) {
(gdb)



Inspecting the Program

* |Inspecting arguments and local variables

(gdb) info args /| Show arguments
(gdb) info |ocals // Show local vars
(gdb) info variabl es //Show locals & globals

(gdb) p vari abl e name // Print value of var

* Concrete examples
(gdb) p nanes| O]

(gdb) p &



Inspecting the Program

* Where are we?

(gd
(gd
(go
(gcC
(ga

0)

where (or backtrace) // Call stack
frame // Current activation record

up // Move up call stack

down // Move back down

| // Print 10 lines of context

e Commands such as: “i nfo | ocal s” depend on the
activation record that you are examining. They
produce different output as your move around with
“up” and CCdovm”



Step-by-step Execution

* Executing step-by-step

(gc
(gc

(gc

D) n // Execute one statement and stop at next

) s // Step inside function

n) ¢ // Continue until next breakpoint



More About Breakpoints

* Different types of break points

(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)

(gdb)

DI ea
DI ea

DI ea

K function_nane
K file _nanme:function_nane

K 1 ne nb

del et e // Delete all breakpoints

clear file nane:function_nanme

clear line nb
break XXX i f expr // Conditional break

hel p

XXX [/ To get more info



(gdb) quit



References (read as you need)

* Programming in C
— Chapter 18
- Chapter 16 (pp 137-152)

* gdb documentation
- http://ww. gnu. or g/ sof t war e/ gdb/



