CSE 303, Spring 2007, Assignment 5B
Due: Monday 14 May, 9:00AM

Last updated: April 30

You will implement a “warehouse model” and unit tests for it. Other group members will independently
develop a “unique-identifier data structure” and an “order-filling algorithm.” The sample warehouse.c file
is about 120 lines (this does not include other files). (Though the longest of the 3 assignments, the code has
much easier algorithms.)

Requirements:

e Put your code in two files, warehouse.c and warehouse_test.c. Both should include warehouse.h,
which you should write. Write an appropriate Makefile.

e warehouse.h (provided) should have just these prototypes plus typical header-file stuff:

#include "identifier.h" // also provided
struct Product;

struct Part;

struct Warehouse;

struct Warehouse * new_warehouse();

struct Part * add_part(struct Warehouse*, charx);

struct Product * add_product(struct Warehouse*, char*);
struct Part * get_part(struct Warehouse*, charx);

struct Product * get_product(struct Warehouse*, charx);
void add_part_to_product(struct Product*, struct Partx*);
int product_count(struct Warehousex) ;

int part_count(struct Warehousex);

void receive_parts(struct Part*, int);

int sell_product(struct Product*);

e warehouse.c will use the declarations in identifier.h, so you will need to write stub definitions.
e In warehouse.c, define 5 structs (including two linked-list types) such that:
— A Part has a pointer to an ID and an int quantity (the number currently available in the ware-

house).

— A Product has a pointer to an ID and a linked-list of Parts (those necessary to make the product;
the same Part may be in the list multiple times if multiple are needed to make the product).

— A Warehouse has two pointers to IDSpaces (one for Product IDs and one for Part IDs), a linked-
list of all products, and a linked-list of all parts.

e new_warehouse returns a pointer to a new-heap allocated warehouse with no parts or products.

e If add_part is given a part-name that already exists in the Warehouse, it returns the struct Part*
already in the Warehouse. (Hint: Use another function.) Else it creates a new Part, adds it to the list
of all parts, and returns it. (Hint: You need to call malloc twice.) Use string to_id and the IDSpace
for Parts to get an ID. Intiailize the quantity to 0.

e add_product is like add_part except it returns a struct Product*, uses the IDSpace for Products,
adds to the list of all products, and has an initial part-list of NULL.

e get_part returns the struct Part* in the Warehouse with the part-name passed as an argument
(use string to_id to get the right ID and then compare IDs with pointer-equality; it is up to the ID
implementation to ensure this is correct). If no ID matches, return NULL.



get_product is like get_part except it returns a struct Productx*.

add_part_to_product adds its second argument to the part-list of the first argument. (We assume
both the Product and the Part are already in the same Warehouse.)

product_count returns how many Products are in the warehouse.
part_count returns how many Parts are in the warehouse.
receive_parts increases the quantity of the Part it is passed by the amount of the int it is passed.

sell _product updates the parts inventory for selling the Product. That is, for each Part in the part-
list, we decrement its quantity. (If a Part appears multiple times, its quantity will decrement multiple
times.) The return value is 1 if no Part’s quantity becomes negative and 0 if some Part’s quantity
becomes negative.

Advice/Hints:

Understand how all the pointers interact before you start coding. Be sure your struct definitions are
right.

Use the return value of sell_product for testing.

You may also write a print_inventory function in warehouse.c to help with testing (and you will
need it for homework 6 anyway).

Some of the functions are very easy.

Do not fret that you are not required to write memory-deallocation functions; this is to keep the
assignment smaller.

Assessment and turn-in:
Your solutions should be:

Correct C code that compiles without warnings using gcc -Wall and does not have space leaks
In good style, including indentation and line breaks

Of reasonable size

Your test code should provide good coverage.

Use turnin for course cse303 and project hwb. If you use late-days, use project hwblatel (for 1 late day) or
hwblate2 (for 2).



