4 N

CSE 303:
Concepts and Tools for Software Development

Dan Grossman
Winter 2006
Lecture 17— Unit testing, stubs, specification, etc.

- /

Dan Grossman CSE303 Winter 2006, Lecture 17 1

/VVhere are We

-

e In the middle of software development tools
— “Done”: preprocessors, compilers, debuggers, profilers,
— "“To do”: compilation-managers, version-control systems,

linkers, archive-generators

e Today: “software engineering” topics related to homework 5.

Dan Grossman CSE303 Winter 2006, Lecture 17

ﬂl'esting 1,2, 3

-

e Role of testing and its plusses/minuses
e Unit testing or “testing in the small”

e Stubs, or “cutting off the rest of the world” (which might not
exist yet)

Dan Grossman CSE303 Winter 2006, Lecture 17 3

/A little theory

~

-

e Motto (Hunt and Thomas): “Test your software or your users will”

e Testing is very limited and difficult:

— Small number of inputs

— Small number of calling contexts, environments, compilers, ...

— Small amount of observable output

— Requires more things to get right, e.g., test code

e Standard coverage metrics (statement, branch, path) are useful
but only emphasize how limited it is.

Dan Grossman CSE303 Winter 2006, Lecture 17 4

/Colored boxes

“black-box” vs. “white-box”

-

e black-box: test a unit without looking at its implementation

— Pros: don’'t make same mistakes, think in terms of interface,
indepdent validation

— Basic example: remember to try negative numbers

e white-box: test a unit with looking at its implementation

— Pros: can be more efficient, can find the implementation’s

corner Cases

— Basic example: try loop boundaries, “special constants”

Dan Grossman CSE303 Winter 2006, Lecture 17 5

/Stu bs \

e Unit testing (a small group of functions) vs. integration testing

(combining units) vs. system testing (the “whole thing” whatever
that means)

e How to test units (“code under test”) when the other code:
— may not exist
— may be buggy
— may be large and slow

e Answer: You provide a “fake implementation” of the other code
that “works well enough for the tests".

— Fake implementation is as small as possible, so the functions

are often called “stubs’ .

- /

Dan Grossman CSE303 Winter 2006, Lecture 17 6

/Stubbing techniques \

Honestly something I've never been taught, but here are some tricks |

use:

e Instead of computing a function, use a small table of pre-encoded

answers
e Return wrong answers that won't mess up what you're testing
e Don't do things (e.g., print) that won't be missed

e Use a slower algorithm

e Use an implementation of fixed size (an array instead of a list?)
e ... other ideas?

Lecture-size example can be tough, but we can show the ideas with

\ihe prime-number code from last lecture. /

Dan Grossman CSE303 Winter 2006, Lecture 17 7

(E

ating your vegetables \

-

e Make tests:
— early
— easy to run
— that test interesting and well-understood properties

— that are as well-written and documented as other code
e \Write the tests first?
e \Write much more code than the “assignment requires you turn-in"

e Manually or automatically compute test-inputs and right-answers?

/

Dan Grossman CSE303 Winter 2006, Lecture 17 8

ﬂl’esting — of what \

Summary: Testing has some concepts worth knowing and using

e Coverage
e White-box vs. black-box
e Stubbing

But we made a big assumption, that we know what the code is
supposed to do!

Oftentimes, a complete specification is as difficult as writing the code.
But:

e It's still worth thinking about.
e Partial specifications are better than none.
e Checking specificatins (at compile-time and/or run-time) is great

\\ for finding bugs early and “assigning blame”. /

Dan Grossman CSE303 Winter 2006, Lecture 17 9

/Full Specification \

Often tractable for very simple stuff: “Take an int @ and return O iff
there exists ints y and z such that y * z == x (where x,y,z > 0

and y, z < x).
What about sorting a doubly-linked list?

e Precondition: Can input be NULL? Can any prev and next fields
be NULL? Must it be a cycle or is “balloon” okay?

e Postcondition: Sorted (how to specify?) — and a permutation of

the input (no missing or new elements).

And there's often more than “pre” and “post” — time/space overhead,
other effects (such as printing), things that may happen in parallel.

Specs should guide programming and testing!

- /

Dan Grossman CSE303 Winter 2006, Lecture 17 10

/Partial Specifications \

The difficulty of full specs need not mean abandon all hope.

Useful partial specs:
e Can args be NULL?
e Can args alias?
e Are stack pointers allowed? Dangling pointers?
e Are cycles in data structures allowed?
e What is the minimum/maximum length of an array?
o ...

Guides callers, callees, and testers.

- /

Dan Grossman CSE303 Winter 2006, Lecture 17 11

/Beyond testing \

Specs are useful for more than “things to think about while coding”

and testing and comments.

Sometimes you can check them dynamically, e.g., with assertions (all

examples true for C and Java)

e Easy: argument not NULL

e Harder but doable: list not cyclic

e Impossible: Does the caller have other pointers to this object?
Or statically using stronger type systems or other tools:

e Plusses: earlier detection (“coverage” without running program),

faster code

\\ violated)

e Minus: Potential “false positives” (spec couldn't ever actually be

/

Dan Grossman CSE303 Winter 2006, Lecture 17 12

