
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Winter 2006

Lecture 16— Profilers, e.g., gprof

Dan Grossman CSE303 Winter 2006, Lecture 16 1

'

&

$

%

Profilers

A profiler monitors and reports (performance) information about a

program execution.

They are useful for “debugging correct programs” by learning where

programs consume most time and/or space.

“90/10 rule of programs” (and often worse for new programs) – a

profiler helps you “find the 10”.

But: The tool can be misused and misleading.

Dan Grossman CSE303 Winter 2006, Lecture 16 2

'

&

$

%

What profilers tell you

Different profilers profile different things.

gprof, a profiler for code produced by gcc is widely available and

pretty typical:

• Call counts: # of times each function a calls each function b

– And the simpler fact: # of times a was called

• Time samples: # of times the program was executing a when

“the profiler woke up to check where the program was”.

Neither is quite what you want (as we’ll see later), but they’re

semi-easy and semi-quick to do:

• Call counts: Add code to every function call to update a table

indexed by function pairs.

• Time samples: Use the processor’s timer; wake up and see where

the program is.

Dan Grossman CSE303 Winter 2006, Lecture 16 3

'

&

$

%

Using gprof

• Compile with -pg on the right.

– When you create the .o (for call counts)

– When you create the executable (for time samples)

• Run the program (creates (overwrites) gmon.out)

• Run gprof (on gmon.out) to get human-readable results.

• Read the results (takes a little getting used to).

Dan Grossman CSE303 Winter 2006, Lecture 16 4

'

&

$

%

Getting useful info

• The information depends on your inputs! (Always know what

you’re profiling)

• Statistical sampling requires a reasonable number of samples

– Probably want at very least a few thousand

– Can run a program over and over and use gprof -s (learn on

your own; write a shell-script)

• Make sure performance matters

– Is 10% faster worth uglier or buggier code?

– Do you have better things to do (documentation, testing, ...)?

Dan Grossman CSE303 Winter 2006, Lecture 16 5

'

&

$

%

Performance tuning

• Never tune until you know the bottleneck (that’s what gprof is

for, but it doesn’t tell you how to tune).

• Rarely overtune to some inputs at the expense of others.

• Always focus on the overall algorithm first.

• Think doubly-hard about making non-modular changes.

• Focus on low-level tricks only if you really need to (< 5 times in

your career?)

• See if compiler flags (e.g., -O) are enough.

Note: Performance tuning a library is harder because you want to do

well for “unknown programs and inputs”.

Dan Grossman CSE303 Winter 2006, Lecture 16 6

'

&

$

%

Our example

• Different bottlenecks for large array-size and large max-number!!

– If you knew max-number could never be more than 10, would

you optimize is_prime?

• Optimal algorithm for is_prime is slower than for

find_largest, but we did not write the optimal algorithms!

• After fixing time for find_largest, we still had a stack overflow.

• Changing the is_prime algorithm helped a lot.

• Little things (e.g., reordering tests and loops) generally “lost in

the noise”.

• Output affects wall-clock time.

Note: For more rigorous comparisons, we should not randomly seed

the random-number generator.

Dan Grossman CSE303 Winter 2006, Lecture 16 7

'

&

$

%

Misleading Fact #1

Cumulative times are based on call estimation. They can be really,

really wrong, but usually aren’t.

int g = 0;

void c(int i) {

if(i) return;

for(; i < 100000000; ++i)

++g;

}

void a() { c(0); }

void b() { c(1); }

int main(int argc,char**argv) { a(); b(); return 0; }

Conclusion: You must understand what your profiler measures and

what it presents to you. gprof doesn’t lie (if you read the manual)

Dan Grossman CSE303 Winter 2006, Lecture 16 8

'

&

$

%

Misleading Fact #2

Sampling errors (for time samples) can be caused by too few samples,

or by periodic sampling

void a() { /* takes 0.09 s */ }

void b() { /* takes 0.01 s */ }

int main(int argc,char**argv) {

for(; i < 10000; ++i) {

a();

b();

}

}

This probably doesn’t happen much and better profilers can use

random intervals to avoid it.

Related fact: Measurement code changes timing (an uncertainty

principle).

Dan Grossman CSE303 Winter 2006, Lecture 16 9

'

&

$

%

Poor man’s profiling

The time command is more useful because no measurement overhead,

but less useful because you get only whole-program numbers.

• real: roughly “wall-clock”

• user: time spent running the code in the program

• system: time the O/S spent doing things on behalf of the program

Not precise for small numbers

Misleading Fact #3: gprof does not measure system time?

Effects on real time: Machine load, disk access, I/O

Effects on system time: I/O to screen, file, or /dev/null

Dan Grossman CSE303 Winter 2006, Lecture 16 10

'

&

$

%

Compiler Optimization

Compilers must:

• Trade “compile-time” for “code-quality”

• Make guesses about how code will be used.

You can affect the trade-off via “optimization flags” – definitely easier

but less predictable than modifying your code.

gcc is not a great optimizer:

• For our initial example, it made a big improvement.

• For our final code, it caused a slowdown!

– Unusual: probably making bad guesses about is_prime.

– Most programs not limited by 10 lines of integer manipulations.

Bottom line: Remember to “turn optimizations on” if it matters.

Dan Grossman CSE303 Winter 2006, Lecture 16 11

