
CSE 303, Winter 2006, Assignment 7
Due: Friday 10 March, 9:00AM

Last update: 18 February

Summary: You will write a Java program and a bash script to test the effectiveness of your homework 6
solution (concluding that it is not good). This is an individual assignment. You will perform a “takeout
validation” test like this:

• There are two directories of files, the “test directory” and the “control directory”.

• Divide the test-directory files into random groups of 5 (with one smaller group of leftovers if necessary).

• For each group, take the files out of the test-directory and run spam detector on the two directories
and each file in the group (i.e., run spam detector 5 times or maybe fewer for the last group). Then
put the files back in the test-directory.

• Record how well spam detector does at “guessing” which directory the files came out of. (With the
listMail example directory as the “test directory” and the spamMail example directory as the “control
directory” your instructor found that depending on the random groups, the program got between 1
and 3 of the 33 right, meaning we would be better off flipping a coin. But negative results are better
than no results.)

Requirements:

• Write a Java program that takes two command-line arguments, a directory d and a number n, and
prints to stdout all the files in d, with n on each row (and possibly less than n on the last row). You
should not print . or .. (though this won’t be a problem — see advice for what libraries to use). What
files are on what line should be random; you should expect different output every time you run your
program. (See advice for how to create a random permutation.) Print an appropriate error-message
to stderr if the command line has two few arguments, the first is not an accessible directory, or the
second cannot be converted to a positive integer.

• Write a bash script takeoutTester that takes two command-line arguments (first the “test directory”
second the “control directory”) and performs the “takeout test” putting 5 files in each group. A skeletal
solution is provided; complete the skeleton without changing the code provided. Sample output is also
provided: You should print out a group of filenames, then the result of spam detector for each file
in the group, then the next group of filenames, and so on. Finally you should print the total number
right and the total number of files in the test directory.

• Extend your homework-six Makefile with two new targets: (1) for building the Java code as necessary
and (2) a “phony” target run for running takeoutTester using the listMail example directory as the
“test directory” and the spamMail example directory as the “control directory”.

Advice:

• For the Java program:

– The sample solution uses 3 static methods (as a matter of style; 1 would have worked) and is
about 55 lines.

– Use the java.io.File, java.util.Random, and java.lang.Integer classes, particularly the
nextInt, parseInt, and list methods. A documention source for the Java standard library is:
http://java.sun.com/j2se/1.5.0/docs/index.html
in particular the “lang&util” and “I/O” parts of the library.

– Catch a NumberFormatException error; ask if you have never caught exceptions before.

1



– Here is one easy way to take an array and switch the order of the elements so you have a random
permutation. Use this algorithm; one you make up is probably wrong. For each position i of the
array from 0 to the right in order, swap the contents of i with the contents of a random position
j ≤ i (if j == i obviously the swap does not do anything, but that’s okay).

– Create a random permutation of the files and then print out the file names, putting spaces and
newlines in as appropriate.

• For the bash script:

– The sample solution is 45 lines including provided code.
– Follow the “TO DO” comments in the provided skeleton.
– There may be many ways to store the ith line of a file in a shell variable; the sample solution uses

sed and back-quotes for a simple one-line solution.
– Store the result line of running spam detector in a variable using back-quotes.
– To determine if spam detector thought the test-directory was closer, use grep (sending output

to /dev/null) and then examine grep’s exit code.

• For the Makefile: Your phony target should have one or more sources, but it should not itself be a
source for all, i.e., you should have to type make run to run a test.

Extra Credit: Do all the following:

• Extend spam detector to support at least 5 distance functions (if you did the extra credit in homework
6, you will already have most of this).

• Extend takeoutTester to use 5 for the file-per-line only if there is no third command-line argument
(else use the value of this argument). It can also take a fourth argument for how to run spam detector.

• Write a program (in any language) called allApproachesTester that uses takeoutTester as follows:

– Like takeoutTester it takes two directories
– It runs takeoutTester with the directories, but for every combination of group-size (from 1 to

the number of files in the test directory) and distance function.
– It stores all the results in comma-separated format suitable for pasting into a spreadsheet. For

example, one line might look like 4,0,3,33 indicating that the group size was 4, distance-function
0 was used (you can number them however you want), and 3 of 33 files were correctly categorized.

• Make a graph displaying your results (group-size on the x-axis, percentage-right on the y-axis, one line
for each distance function). You can turn in a spread-sheet file and/or a picture holding your graph.

Assessment: Your solutions should be:

• Correct Java and bash code

• In good style, including indentation and line breaks

• A Makefile that rebuilds fairly precisely what is necessary

• Of reasonable size and efficiency

Turn-in:

• Turn-in all source code, including the .c and .h files for homework 6. Do not turn in compiled code.

• The grader should be able to type make run and have all the code compile and one test run. (Of
course, typing make run again will run another test but not require any compilation.)

• Do not turn in any example files.

• Use turnin for course cse303 and project hw7. If you use late-days, use project hw7late1 (for 1 late
day) or hw7late2 (for 2) instead of hw7.

2


