CSE 303, Winter 2006, Assignment 5C
Due: Wednesday 22 February, 9:00AM

Last update: 12 February

You will write some “counter distance” code and unit-tests for it while other group members independently
implement some I/O code and a counter data structure. The sample solution is 40-45 lines, not including
testing code or the header file. (Though the shortest of the 3 assignments, the testing is probably the most
difficult because you do not have the counter data structure.)

Requirements:

e Put your code in two files, 5¢c.c and 5c_test.c. Both should include 5¢.h, which you should write.
5c.h needs just these prototypes plus typical header-file stuff:

struct WordCounter;
typedef struct WordCounter * word_counter_t;

int how_many(word_counter_t counter, char* word);
int longest_word(word_counter_t counter);
int does_longer_exist(word_counter_t counter, char * word);

e In 5c.c, you will implement the function average_distance (described below), using helper functions
you write and helper functions declared in 5c.h, but you should mot implement the counter data
structure or the helper functions declared in 5¢.h. Your testing code (5c_test.c) will have to provide
“stubs” (fake implementations) for the declarations in 5c.h.

e A counter is a data-structure that for any word (any sequence of lower-case English letters) reports a
non-negative number — to get the number, call how_many with the counter and the word (plus a trailing
’\0’ so how_many knows the word’s length). A counter can report the length of its longest word with
a non-zero number (longest_word). Finally, it can take a word (with a trailing >\0’) and report true
(1) if it has any words that start with the given word, are strictly longer, and have a non-zero number
(does_longer_exist).

e Given two “counters” c1 and c2 we calculate the distance between them as follows. Let sum be a
variable (of type double since it might get big) initialized to 0.0.

— For every word w in c¢1 with a non-zero number n, get the number m for w in c2 and add the
square of the difference between m and n to sum.
— For every word w in ¢2 with a non-zero number n, if the number for w in c1 is 0, then add the
square of n to sum.
The distance is then the square root of sum.

Note this is the “Euclidean distance” where we have one dimension for every word (i.e., a very high-
dimensional space). Note also the definition is symmetric (the distance from c1 to c2 equals the
distance from ¢2 to c1).

e average_distance should match this prototype:
double average_distance(word_counter_t c, int len, word_counter_t * arr);

The third argument points to an array holding len counters. Return the average distance of c to these
counters. See the next page for how to break the problem down into helper functions. See especially
how to avoid generating every possible word.

e In 5¢c_test.c put unit tests for your code and a main that runs them.



Advice:

Understand the algorithm before you start coding.

To compute average_distance, use a helper function distance that takes two counters and computes
their distance. Sum the results and divide by the number of counters in the array.

Computing the two components of sum is so similar that it’s easiest to write a helper function that
takes a flag (a boolean argument) indicating whether to add the sum for all words or only for words
whose number in the second counter is zero. For example:

double sum_one_direction(word_counter_t from, word_counter_t to,
int only_to_zero); // the flag

You can use longest_word to determine the size of an array large enough to hold any word you will
pass to how_many. Reuse the array rather than allocating a new one for every word.

For the core of the algorithm, you need to consider every possible sequence of lower-case English letters
up to the longest possible length in one of the counters. However, this is too inefficient (if there’s a 10-
letter word, this would be 26'° which is over 100 trillion). Therefore, you must use does_longer_exist
to avoid trying most letter sequences. Read on...

For the core of the algorithm, you will want to use recursion. (If you fight this advice, you will regret
it!) Use a function like this:

double sum_prefix(word_counter_t from, word_counter_t to,
int only_to_zero, char * buf, int i);

The caller ensures buf [0], ..., buf [i-1] are already set to some prefix and the rest of buf (which is
large enough for any word in from) holds \0’. The callee takes care of every longer word that starts
with buf [0], ..., buf [i-1] returning the sum of their sums. To do so, it uses a loop to:

— Set buf [i] to each lower-case letter and compute the sum for the resulting word.

— If from has longer words starting with buf [0], ... buf [i], then recur with i+1 for i and add in

all the results. Remember after the recursive call to set buf [i+1] back to *\0’.

Note the initial call to sum_prefix uses 0 for i, which means compute the sum (in one direction) for
all words with length greater than 0.

For your loop, you may assume the lower-case English letters have numeric values that are consecutive
and in order (so you start with *a’ and increment until you get through ’z?).

To use the sqrt function in the math library, include math.h and compile with -1m.

Assessment and turn-in:
Your solutions should be:

Correct C code that compiles without warnings using gcc -Wall and does not have space leaks
In good style, including indentation and line breaks

Of reasonable size

Your test code should provide good coverage.

Use turnin for course cse303 and project hwb. If you use late-days, use project hwblatel (for 1 late day) or
hwblate2 (for 2) instead of hw4.



