CSE 303, Winter 2006, Assignment 5A
Due: Wednesday 22 February, 9:00AM

Last update: 12 February

You will write some I/O code and unit-tests for it while other group members independently implement
a word-count data structure and some “counter distance” code. The sample solution is 60-65 lines, not
including testing code.

Requirements:

Put your code in two files, 5a.c and 5a_test.c. Both should include 5a.h, which you should write.
5a.h needs just this prototype and typical header-file stuff:

int next_multiletter_word(FILE * file, int buflen, char * buf);

In 5a.c, implement next_multiletter_word. Use helper functions as appropriate, of course.

Assume file is a file opened for reading, and buf points to an array large enough to hold buflen
characters.

Your function should read the next “word” from the file as follows:
— Skip any characters that are not an English letter (either case) or the numbers 0 or 1. That is,
the word does not start until such a letter is reached.

— The word continues until a character that is not an English letter (either case), 0, 1, a period, or
a comma is reached.

— In the word, any period or comma is skipped. For example, the character sequence a..r.t.f,ul.
is the word artful.

— Skip one-letter words. For example, a, e, and f. should all be skipped — it is like the one English
letter is a space. But 0a, 01, and a.0 are all two-letter words.

“Convert” the word you find as follows:

— Remove every period and comma.
— Convert every capital letter to lower case.
— Convert every 0 to ’o’.

— Convert every 1 to >1°.
If you reach an EOF character (end-of-file) without finding a word, return -1.

If the next (converted) word plus a trailing >\0’ would fit in buf, then store it and a trailing >\0’ in
buf and return the length of the word (not including the trailing >\0?).

If the next (converted) word plus a trailing >\0’ would not fit in buf, then still return the length of
the word (not including the trailing >\0?). (So the return value does not depend on buflen.) But also
reset the “current position” of file to where it was before the function was called. If resetting the
position fails, print an appropriate message to stderr and exit the program.

You may set contents of buf to whatever you want in this case, but you must not write too many
characters.

In 5a_test.c put unit tests for your code and a main that runs them. You will want to provide also
text files for reading, which your test code will open.



Advice:
e Use man or a reference manual to learn about fgetc, fseek, ftell, isalpha, and tolower.
e First store the starting position of the file in case you need to reset it later.
e Then find the first and second letter of the word (since you skip one-letter words).
e Checking that buflen is large enough, store these letters (after conversion) in buf.

e Then loop until the end of the word, checking buflen as appropriate and converting each character as
you go (and skipping periods and commas without storing them).

e Remember that if you encounter EQF before a two-letter word, you return -1, but otherwise EOF may
mark the end of a word that should still be returned.

e Because much of the character-checking for the “first two characters” and the “remaining characters”
is the same, helper functions will prove useful.

Assessment and turn-in:
Your solutions should be:

e Correct C code that compiles without warnings using gcc -Wall and does not have space leaks
e In good style, including indentation and line breaks
o Of reasonable size

Your test code should provide good coverage.
Turn in your example text files.

Use turnin for course cse303 and project hwb. If you use late-days, use project hwblatel (for 1 late day) or
hwblate2 (for 2) instead of hw4.



