
CSE 303, Winter 2006, Assignment 3
Due: Friday 3 February, 9:00AM

Last update: January 24

You will modify some small C programs.

1. Get points.c from the course website. It defines types for points and lines, some simple functions, a
test function, and main. You need to add six functions as follows:

• intersect1 takes two lines (arguments of type line_t i.e., struct Line2D) and returns a point
(of type point_t i.e., struct Point2D). The point should be the point on both lines. (Do
not worry about parallel lines; floating-point computations should “correctly” use infinity and
negative-infinity.)

• line containing takes two points and returns the line containing both points. (Do not worry
about the two points being the same. You will get an answer, but it won’t mean much.)

• intersect2 takes two pointers to lines and returns a pointer to a point that holds the intersection.
Use malloc to heap-allocate a new point for the result to point to. Do not call any helper functions
(except malloc).

• intersect3 behaves just like intersect2 except it uses intersect1 as a helper function. It
should not read any fields of points or lines directly.

• intersect4 has return-type void and takes three arguments: first a pointer to a point and then
two pointers to lines. It mutates the pointed-to point to hold the intersection of the two lines.

• intersect5 takes the same arguments as intersect4 but has return-type int. If the slopes of
the two lines differ by less than 10−10, then it returns 0 and does not modify the pointed-to point.
Otherwise it behaves like intersect4 and returns 1. (We are essentially checking for parallel lines.
Because of rounding errors, floating-point numbers should almost never be tested for equality.)

Advice: You can comment out parts of points test to test some of your functions before you write
the others. No function body needs to be longer than a few lines. The correct output is below. (XXX
represents numbers that are unpredictable. Each answer of (Inf,Inf) could also be (-Inf,-Inf).)

y = -1 x + -3
y = 0 x + 3
y = 1 x + 0
y = 1 x + 1
(0,0)
(5,5)
(0,1)
(5,6)
(-6,3)
(Inf,Inf)
(-6,3)
(Inf,Inf)
(-6,3)
(Inf,Inf)
(-6,3)
(Inf,Inf)
(-6,3)
(XXX,XXX)
(XXX,XXX)
ans1=1, ans2=0

1



2. Get wordfind.c from the course website. It contains a correct (as far as we know) C program that
solves “word finds”. You will make 3 changes to this file (see “Changes” below). Note you can do the
changes in any order.

Description: The program takes 3 arguments: (1) a grid-height, (2) a grid-width, and (3) a file-
name. The file should contain a “grid” of characters, i.e., grid-height lines, each containing grid-width
characters. The program reads the grid into memory (specifically a heap-allocated array of array of
characters) and then repeatedly prompts the user (on stdout) for a word (on stdin). It looks for the
word in the grid (starting at any position and proceeding up, down, left, or right), and prints either
“found” or “not found”. A blank line or a word too long to fit in the grid causes the program to exit.

If the input file has any extra lines they are ignored. Lines longer than necessary may lead to the
program malfunctioning.

Changes:

(a) Change the expected format of the input file. Specifically, expect there to be a space after every
character and a blank line after every line of characters. Do not put the spaces and blank lines
into the grid. Instead, expect the input lines to be longer (and on every other line), but have the
make_grid function process the input by skipping over the blanks.

(b) Improve the word-finding to look also for diagonal words (in all four diagonal directions).

(c) Change the output when a word is found to include the starting position and direction of the
word in the grid. Three example outputs would be:

found: row 2 column 3 up left
found: row 1 column 12 down
found: row 7 column 9 right

The row and column are the position of the first letter in the found word. The first line of the
grid-file is row 1, the second line row 2, etc. Columns also “start at 1” and proceed left-to-right.
The direction is 1 of 8 possibilities. An extra space or two in your output is fine.

Advice: Understand the code provided to you. You can use man to learn about C library functions
you are unfamiliar with (e.g., man fgets). For the first change, do not use strncpy; write your own
loop instead. The second change requires very little code. For the third change, compute whether
you want to print “up, down, or nothing” and separately whether you want to print “left, right, or
nothing”. Then use a single call to fprintf for the whole output line. You can put all your new code
for the third change in the if-statement in find_word.

Your instructor found http://puzzlemaker.school.discovery.com/WordSearchSetupForm.html fun
and easy to use. The output is not quite in the format you want, but you could use sed to fix that.

3. Extra Credit: Copy your solution to problem 2 to wordfind_extra.c and then make this change: No
longer take command-line arguments for the width and height. Take just the file-name and determine
the width and height based on the file contents. Your solution must be safe even for very large widths
and heights, and it must not have space leaks. Advice: “Make an initial guess” for the grid size and
then “make a bigger grid and free the old one” as necessary.

Assessment: Your solutions should be:

• Correct C programs that compile without warnings using gcc -Wall.

• In good style, including indentation and line breaks

• Of reasonable size

Turn-in Instructions: Use turnin for course cse303 and project hw3. If you use late-days, use project
hw3late1 (for 1 late day) or hw3late2 (for 2) instead of hw3.

2


