
CSE 303 Lecture 24 12/6/2006

1

CSE 303
Concepts and Tools for
Software Development

Richard C. Davis
UW CSE – 12/6/2006
Lecture 24 – Profilers

12/6/2006 CSE 303 Lecture 24 2

Administravia

• HW7 is due today
• Short Papers are due Friday

12/6/2006 CSE 303 Lecture 24 3

Last Time

• Wrap-up software engineering
– Readability
– Robustness

12/6/2006 CSE 303 Lecture 24 4

Today

• Wrap-up C++
– Generic Programming
– Templates
– The Standard Template Library

• Wrap up Tools
– Profilers

12/6/2006 CSE 303 Lecture 24 5

Java Generics

• Java without generics: less type checking
ArrayList l = new ArrayList();
l.add(new Foo());
Foo f = (Foo)l.get(0);

• Generics add type check and remove cast
ArrayList<Foo> l = new ArrayList<Foo>();
l.add(new Foo());
Foo f = l.get(0);

12/6/2006 CSE 303 Lecture 24 6

C++ Templates

• Similar to Java generics in purpose
• Can be used for:

– Functions
– Classes
– Methods of classes (on newer compilers)

• Question: How to cope without templates?
– Answer: Use void pointers

CSE 303 Lecture 24 12/6/2006

2

12/6/2006 CSE 303 Lecture 24 7

Template Syntax

• For function declaration
– Definitions similar
– Class declarations/definitions similar

template <typename Comparable>
Comparable &findMax(vector<Comparable> &a);

12/6/2006 CSE 303 Lecture 24 8

Templates Are a Giant Hairball!

• Details vary from compiler to compiler
– Standard is very hard to implement
– Leaves some questions unanswered

• Problems with separate compilation
– Compiler creates implementation when needed
– Should it go in a .cpp or a .h file? Not clear.

• Warning: C++ templates vs. Java generics
– Don't expect them to work the same way
– They have rather different semantics

12/6/2006 CSE 303 Lecture 24 9

Standard Template Library (STL)

• Equivalent of Java Collections API
– But uses templates
– Strives for flexibility and speed
– STL stores copies instead of references

• Drawbacks
– Same drawbacks as templates
– Can really obfuscate your code

• Note long compiler error messages

12/6/2006 CSE 303 Lecture 24 10

That's all for Templates/STL

• Want to learn more?
– Your book is a good place to start
– Practice!

12/6/2006 CSE 303 Lecture 24 11

Profilers

• Monitors running program
• Reports detailed performance information
• See where program uses most time/space
• "90/10 rule of programs"

– 90% of time spent in 10% of the code
– Profilers help you find the 10% (bottlenecks)

• Warning! Profilers can be misleading!

12/6/2006 CSE 303 Lecture 24 12

Basic Features

• Different profilers monitor different things
• gprof: profiler for code produced by gcc
• gprof is fairly typical and reports

– # times each function was called
– # times function "A" called function "B"
– % time spent in each function

• Estimated based on samples
• Profiler periodically checks where program is

CSE 303 Lecture 24 12/6/2006

3

12/6/2006 CSE 303 Lecture 24 13

Profiler Implementation Basics

• Call counts
– Add code to every function-call

• Updates a table indexed by function pairs
– The profiler instruments your code

• Time samples
– Use the processor's timer
– Wake-up periodically
– Check the value of the program counter

12/6/2006 CSE 303 Lecture 24 14

Using gprof
• Call gcc/g++ with option -pg

– Both when compiling and linking
• Compiler will add code for storing call count info
• Linker will add functions for getting time samples

• Execute the program to get file gmon.out
• Run gprof to analyze results

gprof profile-me gmon.out > results.txt

• Examples:
– primes-gprof.txt
– polytest-gprof.txt & polytest-gprof-abbrev.txt

12/6/2006 CSE 303 Lecture 24 15

Getting line-by-line results

• Compile with option -g -pg
• Run gprof with -l option

gprof -l profile-me gmon.out > results.txt

12/6/2006 CSE 303 Lecture 24 16

Profiler Gotchas

• Profiler is sampling
– Make sure there are enough samples
– Program must run for a sufficiently long time

• Results depend on your inputs
– For instance, imagine array is already sorted

• Programs will run very slow (~1/10 as fast)
– Profiler won't report these times
– The clock will!

• Cumulative times based on estimation

12/6/2006 CSE 303 Lecture 24 17

gprof Estimation Problem Example
int g = 0;
void c(int i) {

if (i) return;
for(; i<2000000000; ++i)
g++;

}

void a() { c(0); }
void b() { c(1); }
int main() { a(); b(); return 0; }

• See misleading.c & misleading-gprof.txt

12/6/2006 CSE 303 Lecture 24 18

Poor man's Profiling with "time"

• Use to measure whole program time
– Usage example: time program args

• Three types of time reported
– real: roughly "wall clock"

• Includes time used by other programs
• Includes disk access time

– user: time spent running code in the program
– system: time the O/S spent doing stuff

• Includes I/O (Note: gprof doesn't measure this)

CSE 303 Lecture 24 12/6/2006

4

12/6/2006 CSE 303 Lecture 24 19

Performance Tuning

• "First make it work, then make it fast"
• Steps in performance tuning

1. Get things to work well, write clean code
2. Locate bottlenecks and performance issues

– Sometimes they are obvious
– Otherwise, profiler can help

3. Optimize your overall program
4. Use low-level tricks if you need to

• Try compiling with "optimization flags"
– gcc/g++ uses -O1, -O2, -O3

12/6/2006 CSE 303 Lecture 24 20

Summary

• Profilers help us understand
– Where program spends most time
– What parts of code are executed most often

• We use gprof, but many profilers exist
– Visual Studio 2005 includes one
– Similar goals and similar basic functionality

• Implementation
– Instrument the code
– Perform extra work as program runs

12/6/2006 CSE 303 Lecture 24 21

Reading

• Optional readings
– C++ for Java Programmers

• Chapter 7: Templates
• Chapter 10: STL

– gprof manual
• http://www.gnu.org/software/binutils/manual/gprof-

2.9.1/gprof.html

12/6/2006 CSE 303 Lecture 24 22

Next Time

• Concurrency?
• Wrap-up

