
CSE 303 Lecture 23 12/4/2006

1

CSE 303
Concepts and Tools for
Software Development

Richard C. Davis
UW CSE – 12/4/2006

Lecture 23 –
Readability and Robustness

12/4/2006 CSE 303 Lecture 23 2

Administravia

• Final Exam in just over a week
– Most similar to cse303 Spring 2006 exam

• This is the only quarter that uses C++ heavily
• Use ".cpp" instead of ".cc"
• Use Subversion/svn instead of CVS/cvs
• Ignore problems 10 and 11 (concurrency)

– Unless we fit this in on the last day

– Also similar to finals from other quarters
• HW7 Due Wednesday, 2PM

– Late Days now visible in MyUW (up to HW4)

12/4/2006 CSE 303 Lecture 23 3

Where We Are

• Last time
– Linkers

• Today
– Writing "good" software

• Readability
• Robustness

12/4/2006 CSE 303 Lecture 23 4

What is "Good" Software?

• No easy answers, but there is a direction
– Code should be Readable

• It's more than just adding comments
• It's about making program logic easy to follow

– Code should be Robust
• Gracefully reacts to unforseen usage
• Gracefully handles various error conditions

– Code should be Maintainable
• Well defined components, loose coupling
• Readability and Robustness also help

12/4/2006 CSE 303 Lecture 23 5

Readable Code: Bad Example

• What does the following code snipped do?
int main(int argc, char** argv) {

int i[argc-1];
for (int j=0; j<argc-1; i[j]=atoi(argv[++j]));
cout << ((argc-1) % 2 ? 'y' : 'n') << endl;
// ...

}

• See if you can tell in 10 seconds

12/4/2006 CSE 303 Lecture 23 6

Readable Code: Good Example
int main(int argc, char** argv) {

// Store all arguments in an array
int size = argc - 1;
int numbers[size];
for (int i = 0; i < size; i++) {

numbers[i] = atoi(argv[i+1]);
}

// Print a message to stdout about the arguments
if ((size % 2) == 0) {

cout << "Number of elements is even" << endl;
} else {

cout << "Number of elements is odd" << endl;
}
// ...

}

CSE 303 Lecture 23 12/4/2006

2

12/4/2006 CSE 303 Lecture 23 7

Why is the "Good" Example Better?

• Better names for variables
– Reflect their content/meaning

• Added Comments
– Describe the purpose of each section of code

• More detailed output
• Better spacing

– Visually separate parts of complex expressions
– Visually separate sections of code

12/4/2006 CSE 303 Lecture 23 8

Why is Readability Important?

• Your code is part of your documentation
– Others need to understand it
– You'll need to understand it when you forget

• Maintenance: fixing bugs is easier
• Adding new features is easier
• Clear code helps clear thinking
• Unreadable code tends to get thrown out

12/4/2006 CSE 303 Lecture 23 9

How to Improve Readability

• Add comments, but don't stop there
• Good levels of abstraction
• Clear expressions and statements
• Make program logic easy to follow
• Each function has a single specific goal
• Some small things that help

– Good variable/class/method names
– Good indentation
– Follow a coding standard

12/4/2006 CSE 303 Lecture 23 10

Writing Robust Code

• Defensive Programming
– Check your function inputs
– Check buffer boundaries
– Check for errors, catch/handle exceptions
– Enforce encapsulation (data hiding)

• Important software engineering principle

• Other general practices
– Strive for simplicity, perform code reviews
– Check invariants (helps testing/debugging)
– Reuse well-tested code (like standard libraries)

12/4/2006 CSE 303 Lecture 23 11

Check Your Function Inputs

• Famous last words:
– "No one would pass a NULL argument here"
– "No one will ever enter a name longer than X"
– "I'll make it work first, then add error handling"

• Golden rule
– Assume callers don't know what they're doing

12/4/2006 CSE 303 Lecture 23 12

Checking Inputs/Buffer Bounds
• Asserts convenient for checking inputs/bounds

– Fail precondition? Crash program
– Use when you don't have time to do better

• Example from Polygon.cpp (HW6)
#include <cassert>
// ...

Point Polygon::GetPoint(int index) const {
assert(index >= 0 && index < NumPoints());
return(pts[index]);

}

CSE 303 Lecture 23 12/4/2006

3

12/4/2006 CSE 303 Lecture 23 13

Checking for Errors

• Every time you invoke a function
– Check if the function can return an error

• Read the specification for that function
• One reason why good specifications are important

– Assume it will sometimes return that error
– Handle the error properly

• Examples
– Opening a file can fail (fopen)
– Reading data from a stream can fail (fscanf)

12/4/2006 CSE 303 Lecture 23 14

Encapsulation

• Key concept in OO programming
• A class encapsulates attributes and funcs.

– Classes correspond to "abstract data types"
• A class "exports" an interface
• All communication goes through interface

– No one is allowed to manipulate data directly
• Information Hiding

– Don't reveal details about implementation
– Don't reveal details about representation

12/4/2006 CSE 303 Lecture 23 15

Check Invariants

• Example of an invariant (HW4)
– "Allocreclist is always in sorted order"

• Add a function: CheckOrderInvariant
– Returns true if list is in order
– Returns false otherwise

• Inside function ARLInsert
– Add: assert(CheckOrderInvariant(head));

• This practice helps early bug detection
12/4/2006 CSE 303 Lecture 23 16

Information Hiding Common Error

• Easy to break encapsulation by accident
• Example:

– Caller and callee have pointer to same object
– Caller can change callee internal rep. BAD!
– A very common source of errors

12/4/2006 CSE 303 Lecture 23 17

Information Hiding Common Error:
String List Input Example

• Example 1: Error when handling inputs

void insert (Node **head, char *original) {
Node node = (Node*)malloc(sizeof(Node));
// ...
node->original = original;

}

12/4/2006 CSE 303 Lecture 23 18

Information Hiding Common Error:
String List Output Example

• Example 2: Error when handling outputs

Node *lookup (Node *head, char *original) {
Node *element = head;
// Iterate through list and find string
return element;

}

CSE 303 Lecture 23 12/4/2006

4

12/4/2006 CSE 303 Lecture 23 19

Information Hiding Solutions

• Solution 1: Copying
– Copy data before integrating into internal rep.
– Return copies of data in internal rep.

• Solution 2: Immutable Objects
– Immutable objects can never be changed

• Solution 3: Using const
– Good idea, but be careful

12/4/2006 CSE 303 Lecture 23 20

Using "const" Type Qualifier

• Example 1: "const" when handling inputs

void insert (Node **head, const char *original) {
Node node = (Node*)malloc(sizeof(Node));
// The following causes compile-time error
node->original = original;

}

12/4/2006 CSE 303 Lecture 23 21

Using "const" Type Qualifier

• Example 2: "const" when handling outputs

const Node *lookup (Node *head, char *original) {
Node *element = head;
// Iterate through list and find string
return element;

}

// Caller cannot change the element returned
const Node *element = lookup(head, my_string);
// The following causes compile-time error
Node->original[0] = 'a';

12/4/2006 CSE 303 Lecture 23 22

Be Careful: Incomplete Solution

• In the lookup example, caller cannot
change the element returned: GOOD

• However, caller has a pointer to an
element that someone else can free by
removing the string from the list: BAD

12/4/2006 CSE 303 Lecture 23 23

"const" Can get very confusing

• Non-constant pointer to constant data
– const char *ptr

– Cannot change the content of these locations
– Can make ptr point to different mem. locations

• Constant pointer to non-constant data
– char * const ptr = …;

– Cannot change what ptr is pointing to
– Can change the content of pointer to location

• Can also have const char * const ptr

12/4/2006 CSE 303 Lecture 23 24

Principles of using "const"

• Principle of least privilege
– Give a function enough access to data to

accomplish task. Not more.
• C++ Notes

– "Accessors" work on const objects
•int GetX() const;

– You can have both accessors and mutators
•Class &GetElement(int idx);
•const Class &GetElement(int idx) const;

CSE 303 Lecture 23 12/4/2006

5

12/4/2006 CSE 303 Lecture 23 25

Towards Security

• Robust software can protect against
– Buffer overflow attacks
– Crashes caused by invalid inputs

• But security is much harder than that
• Example: Denial of service attack

– Send huge numbers of requests to a server
– Example: Keep adding elements to a list

12/4/2006 CSE 303 Lecture 23 26

Summary

• You now know some basic software eng.
– Software development process

• Main steps involved in building a software system

– Specifications
• Why we need them and how to write simple ones
• We talked about informal specifications only

– Testing: Why and How
– Writing Robust and readable code

• There's much more to software engineering
– The examples in this class may not be the best

12/4/2006 CSE 303 Lecture 23 27

Next Time

• Profilers
• STL?

