
CSE 303 Lecture 22 12/1/2006

1

CSE 303
Concepts and Tools for
Software Development

Richard C. Davis
UW CSE – 12/1/2006
Lecture 22 – Linkers

12/1/2006 CSE 303 Lecture 22 2

Administravia

• Any questions on HW7?

12/1/2006 CSE 303 Lecture 22 3

The Build Process

Source Files
(.c, .cpp)

Pre-
processor Compiler

Preprocessed
Source Files

Object Files
(.o) Executable

Library

Library

Pre-
processor Compiler

Linker

Pre-
processor Compiler

12/1/2006 CSE 303 Lecture 22 4

The Build Process

Source Files
(.c, .cpp)

Pre-
processor Compiler

Preprocessed
Source Files

Object Files
(.o) Executable

Library

Library

Pre-
processor Compiler

Linker

Pre-
processor Compiler

Today

12/1/2006 CSE 303 Lecture 22 5

The Goal of the Linker

• Compiled code (.o file) is not "runnable"
• Link with other code to make executable

– Where is the code for printf and new?
– We only included the header files…
– Need to find that code and put in executable

• Normally gcc/g++ hides this from you
• Use -c option to stop right before linking

– We use this to produce .o files

12/1/2006 CSE 303 Lecture 22 6

Linking Overview

• C/C++ file uses undefined func./global var.
– The .o file has "undefined references"
– Note: declarations don't count, only definitions

• Linker "patches" .o files to resolve refs.
• Executable has no unresolved refs.
• Ways to invoke linker

– ld command
– Implicitly through gcc/g++ (we'll do this)

CSE 303 Lecture 22 12/1/2006

2

12/1/2006 CSE 303 Lecture 22 7

Static Linking

• Static Linking: use option -static
– Put all necessary code into executable

• Example: "math" example program
– Step 1: Compile source files

• create Main.o
•g++ -Wall -g -c Main.o

– Step 2: Link files together
•g++ -static -o math -L. Main.o -lpoly

12/1/2006 CSE 303 Lecture 22 8

Creating a Static Library
• Create with ar (stands for "archiver")

– ar rc libpoly.a Polygon.o Point.o
– Creates a static library named libpoly.a

• Containing copies of the two object files
– libpoly.a exists adds/replaces files inside

• Index the archive: ranlib libpoly.a
– Same as running ar with option -s
– Performance during linking
– Order inside the archive will no longer matter

12/1/2006 CSE 303 Lecture 22 9

Other linker options

g++ -static -o math -L. Main.o -lpoly
-lpoly: links with libpoly.a
-L: Specifies a directory containing libraries
-v: See details

• gcc/g++ automatically links executables with
– libgcc.a
– libc.a for C
– libstdc++.a for C++

12/1/2006 CSE 303 Lecture 22 10

Static Linking Step-by-Step
• Begin

– UD Empty Set (No unresolved definitions yet)
– Executable Empty (No code yet)

• For each file :
– .o file? Executable code
– .a file? Executable code for needed definitions only
– Fix references in Executable to funcs/objects defined in new file
– Remove newly resolved funcs/objects from UD
– Add any other unresolved funcs/objects from this file to UD

• End:
– UD empty?

• Yes output executable
• No error

12/1/2006 CSE 303 Lecture 22 11

Consequences of Linking Process

• Position of libs on command line matters
– Discover and resolve references in order
– So typically list libraries after object files
– Example: switch -lpoint and -lpoly in math

• Cycles
– If two .a files need each other, you might need
-lfoo -lbar -lfoo …

12/1/2006 CSE 303 Lecture 22 12

Dynamic Linking
• Static linking has disadvantages

– More disk space
• Copy portions of library for every application

– More memory when programs are running
• Instead, can do dynamic linking at runtime

– Shared libraries (extension .so)
– Saves disk space
– OS can even share memory pages

• Most linking is done this way now
– Avoid using -static option

CSE 303 Lecture 22 12/1/2006

3

12/1/2006 CSE 303 Lecture 22 13

Linking in Java

• Java has the same problems a C/C++
– Must resolving undefined symbols

• Java has a dynamic class loader
– Loads each file when needed

• From class path
• From jar files
• From the web

– Very complicated system

12/1/2006 CSE 303 Lecture 22 14

Summary

• Main steps when building executable
– Preprocessing (specific to C)
– Compiling
– Linking

• Process gets complex for large systems
– Automate the process with Makefiles

• Know about potential problems
– Learn how to solve as you encounter them

12/1/2006 CSE 303 Lecture 22 15

Next Time

• Readability and Robustness
• STL?

