
CSE 303 Lecture 21 11/27/2006

1

CSE 303
Concepts and Tools for
Software Development

Richard C. Davis
UW CSE – 11/27/2006

Lecture 21 – C++ Inheritance

11/27/2006 CSE 303 Lecture 21 2

Administravia

• Having a partner != getting a free ride
– You'll evaluate your partner at end of HW7
– Work things out yourselves, if possible

• Back-stabbing has risks
– This simulates real life

• HW7 posted tomorrow
– Discussion of Profilers postponed
– You'll still have just over a week

11/27/2006 CSE 303 Lecture 21 3

Where We Are

• Up to now
– Linux/Shell scripting
– C
– C++
– Tools for Developers

• From now on
– More C++ features
– Other tool/development topics

11/27/2006 CSE 303 Lecture 21 4

Today

• C++ Inheritance
– Concepts
– Syntax
– Semantics

11/27/2006 CSE 303 Lecture 21 5

Today's Example

Person Base Class

Derived ClassesStudent Teacher

See Example in Inheritance.cpp

11/27/2006 CSE 303 Lecture 21 6

Inheritance in C++
• Three types

– public (most common and most Java-like)
– protected
– private

• Public inheritance
– public in base class public in derived class
– protected protected
– private not accessible in derived class

• Facilitates encapsulation (information hiding)
• Protected data members accessible from

– Member functions
– Member functions of derived classes

CSE 303 Lecture 21 11/27/2006

2

11/27/2006 CSE 303 Lecture 21 7

Base Class and Derived Class
class Student : public Person {
…
};

• Class Student inherits from class Person
– Student is called the derived class
– Person is called the base class

11/27/2006 CSE 303 Lecture 21 8

Syntax Differences with Java

• Declaring derived classes
– Use "public" instead of Java "extends"

• Accessing base class constructor
– 0-arg constructor called automatically
– Other constructors must put in initializer list

• Accessing base class methods
Base::method()

11/27/2006 CSE 303 Lecture 21 9

Dynamic Dispatch
class Person {
…

void print() {
…
class Student : public Person {
…

void print() {
…
Person *p = new Student();
p->print();

• Which method gets called?
– Regular dispatch: Person::Print()
– Dynamic dispatch: Student::Print()

11/27/2006 CSE 303 Lecture 21 10

C++ and Java Dispatch

• Default Dispatch
– Java: Dynamic
– C++: Regular

• Must declare methods virtual to get dynamic
• Only declare this way in class definition

• Big Problem with C++ default
– Destructors must be declared virtual

• Else deleting base class pointer can cause leak!
– Automatically created destructor isn't virtual!

11/27/2006 CSE 303 Lecture 21 11

Inheritance and the "Big Three"

• Inherited Component is like a data member
• Constructors (Copy and 0-arg)

– Base class constructor is called first
– Then constructors called on data members

• Operator=
– Analagous to constructors

• Destructor
– Memory for derived class freed
– Destructor for base class called

11/27/2006 CSE 303 Lecture 21 12

Slicing

Person p = Student();

• Casting stack-based objects causes slicing
– Data in derived class lost
– If objects inherit, use pointers or references

CSE 303 Lecture 21 11/27/2006

3

11/27/2006 CSE 303 Lecture 21 13

Dynamic casts
Person *p1 = new Student();

Person *p2 = new Teacher();

Student *s1 = (Student*)p1; //Fine

Student *s2 = (Student*)p2; //Subtle bugs

Student *s3 = dynamic_cast<Student*>(p1); //Fine

Student *s4 = dynamic_cast<Student*>(p2); //s4 == NULL

• Casting up the inheritance tree works
– But if cast fails, can introduce subtle bugs
– dynamic_cast returns NULL if cast fails

11/27/2006 CSE 303 Lecture 21 14

Other Differences we won't cover

• Declaring abstract classes
• No "Interfaces" in C++

– Can us Multiple Inheritance instead

11/27/2006 CSE 303 Lecture 21 15

Summary

• C++ Inheritance is very similar to Java
• Big Gotchas

– Methods are non-virtual by default
– Declare destructors virtual
– Slicing

• Want Java semantics for objects?
– Make every (non-constructor) method virtual
– Only allocate objects using new
– Access all objects through pointers

11/27/2006 CSE 303 Lecture 21 16

Reading

• C++ for Java Programmers
– Chapter 6: OO Programming: Inheritance

• Skip 6.4, 6.8, and 6.9
• 6.10 Recommended

11/27/2006 CSE 303 Lecture 21 17

Next Time

• Societal Implications
– DRM

